OpenInfra Days Shanghai 2019

Rethinking Hyper-Converged Infrastructure for Edge Computing

Feng Li (李枫) hkli2013@126.com Nov 5, 2019

Agenda

. Edge Computing

- Overview
 - Outstanding Platforms
- Status, Trend, and HCI
- Summary
- II. Overall Design
- Design Goals & Principles
- Hardware Platform
- Why is eBPF
- eBPF Development
- III. Testbed
- Development Boards
- Software Platform
- Development Model
- IV. Computing, Networking, Storage
- HPC
 - Networking

- ntopng
 - DRedis
- Rethink Lightweight Storage Solutions
- V. Containerization, Services, and DevOps
- Kata Container
- Lightweight Kubernetes
- Cilium
- In-Kernel Services
- **VI. Distributed Framework**
- Ray
- My Practice
- VII. Messaging & RPC
- gRPC & Protobuf
- Rethink In-Kernel Messaging
- **VIII. Data Processing**
- Apache Arrow
- Lightweight Solution

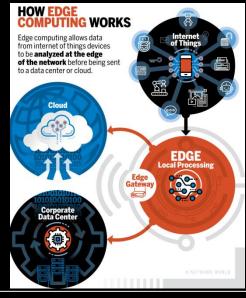
IX. Artificial Intelligence

- Trends
- TVM
- ARM NN
 - My Practice
- X. Monitoring, Tuning, and Debugging
- Extending LISA
- Extending ntopng
- My Practice
- XI. Security
- Reference Design
- Hardware-Software Co-designed System Security

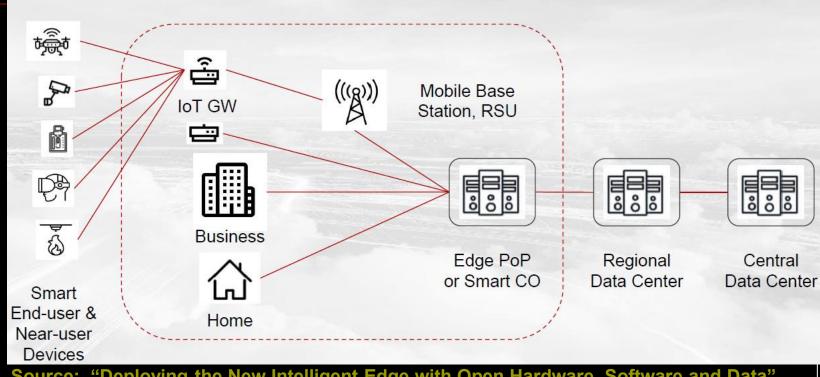
XII. Miscs

- New Python Runtime
- **FPGA**

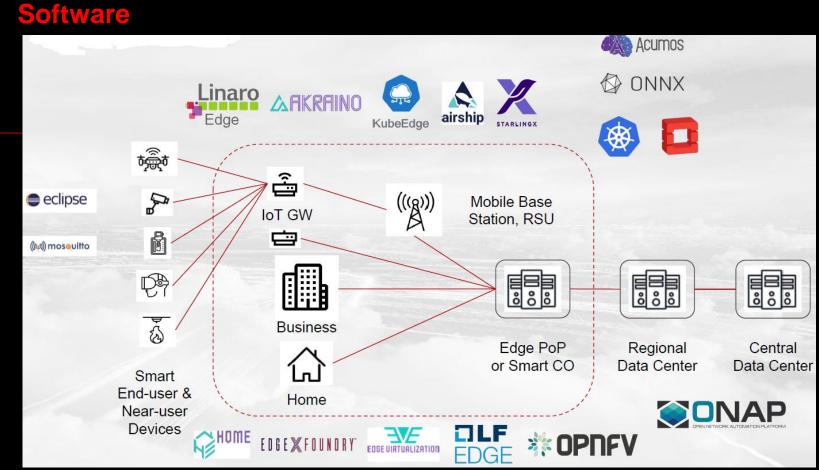
XIII.eBPF-centric New Design

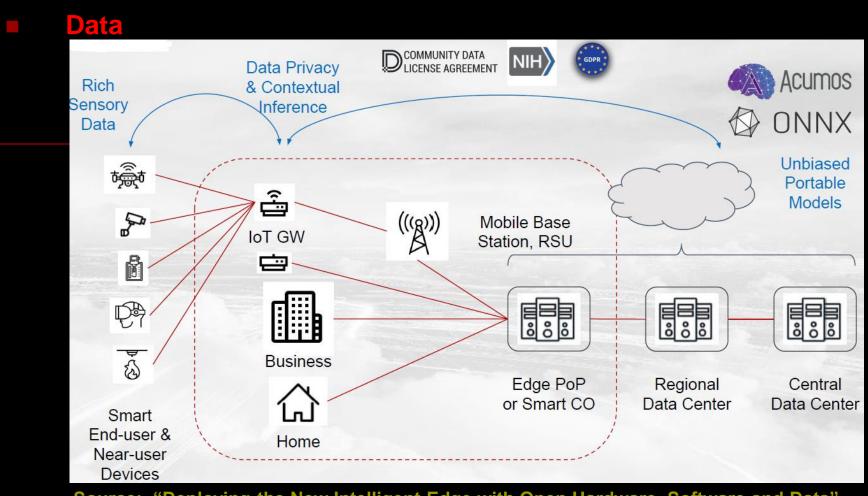

Software Architecture

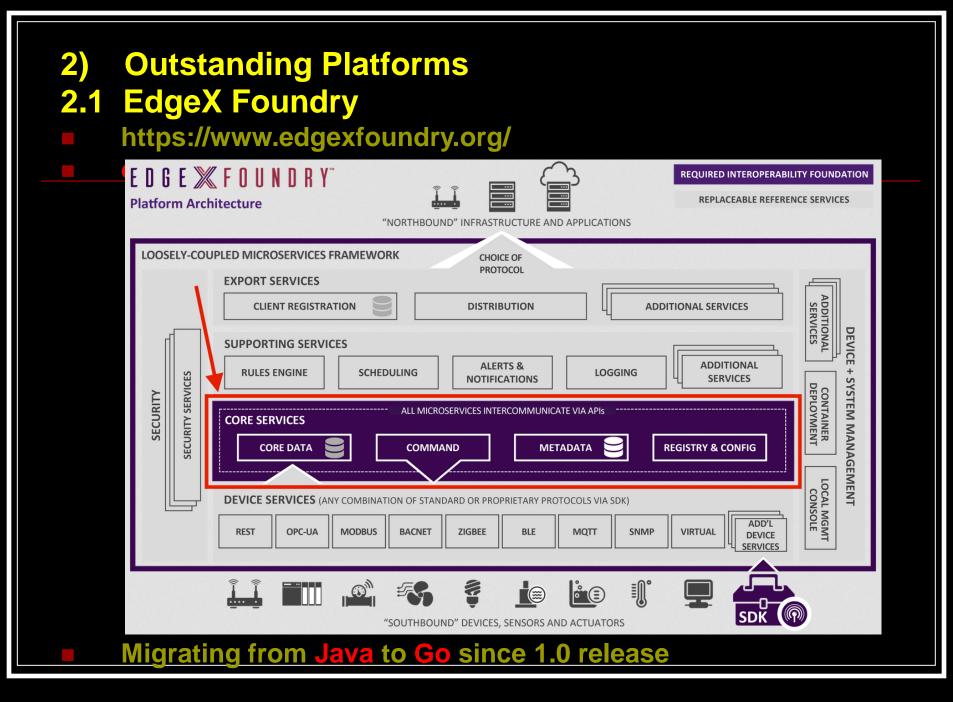
XIV.Wrap-up


I. Edge Computing

1) Overview

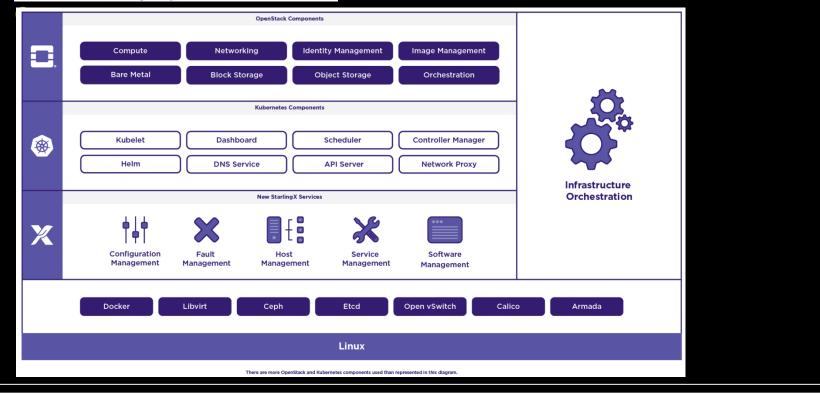

- https://en.wikipedia.org/wiki/Edge_computing
 - a distributed computing paradigm which brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth....
- https://www.networkworld.com/article/3224893/what-is-edgecomputing-and-how-it-s-changing-the-network.html a way to streamline the flow of traffic from IoT devices and provide real-time local data analysis


Intelligent Edge with Hardware, Software and Data Hardware


Source: "Deploying the New Intelligent Edge with Open Hardware, Software and Data", Wenjing Chu, ONS North America 2019

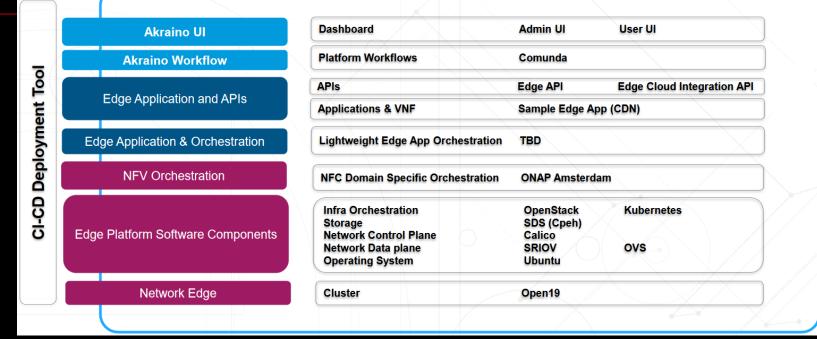
Source: "Deploying the New Intelligent Edge with Open Hardware, Software and Data", Wenjing Chu, ONS North America 2019

Source: "Deploying the New Intelligent Edge with Open Hardware, Software and Data", Wenjing Chu, ONS North America 2019


2.2 StarlingXhttps://www.starlingx.io/

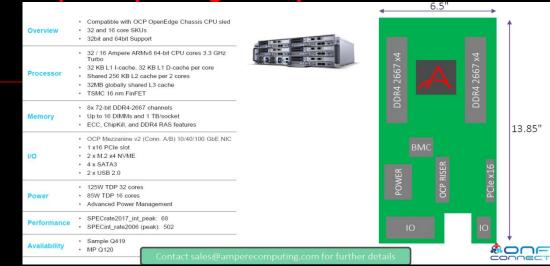
StarlingX is a complete cloud infrastructure software stack for the edge used by the most demanding applications in industrial IOT, telecom, video delivery and other ultra-low latency use cases. With deterministic low latency required by edge applications, and tools that make distributed edge manageable, StarlingX provides a container-based infrastructure for edge implementations in scalable solutions that is ready for production now.

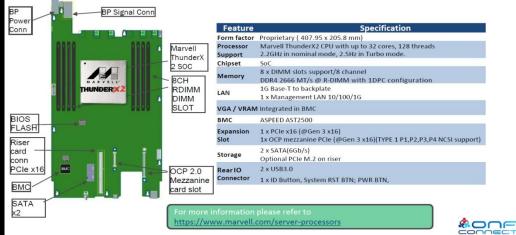
Headline Features of StarlingX 2.0


- Hardened cloud-native platform integrating Kubernetes and OpenStack on dedicated physical servers
- Containerized OpenStack based on the Stein release
- Kubernetes-based edge sites for containerized workloads

StarlingX is closely aligned with the OpenStack code base. Out-of-tree patches continue to decline with the new release of StarlingX, and plans are to eliminate them entirely with the Train release this fall.

2.3 Akraino


https://www.lfedge.org/projects/akraino/ Akraino Edge Cloud Stack


https://www.opennetworking.org/wp-content/uploads/2018/12/ONF_Connect_Open19_and_Akraino.pdf

<u>Akraino on ARM</u>

Ampere OpenEdge Compute Platform

Marvell Open Edge ARM Server Board Detail

https://www.opennetworking.org/wp-content/uploads/2019/09/2pm-Tina-Tsou-Efficient-Computing-atthe-Edge-with-Arm-for-SEBA.pdf

3) Status, Trend, and HCI3.1 ARM Ecosystem in 2019

Model	vCPUs	Memory (GiB)	Instance Storage	Network Bandwidth (Gbps)	EBS Bandwidth (Mbps)
a1.medium	1	2	EBS-Only	Up to 10	Up to 3,500
a1.large	2	4	EBS-Only	Up to 10	Up to 3,500
a1.xlarge	4	8	EBS-Only	Up to 10	Up to 3,500
a1.2xlarge	8	16	EBS-Only	Up to 10	Up to 3,500
a1.4xlarge	16	32	EBS-Only	Up to 10	3,500
a1.metal	16*	32	EBS-Only	Up to 10	3,500

* a1.metal provides 16 physical cores

<u>ARM Neoverse</u>

Room: Moderated Discussions

nobody in particular (nobody.delete@this.nowhe.re) on February 20, 2019 7:35 am wrote: > Write-up at Anandtech

> The stated SPECint numbers are superb. I'm looking forward > to spec2017, but this is a very, very promising start.

We'll see if it actually delivers, but ARM is certainly looking a whole lot better than it used to.

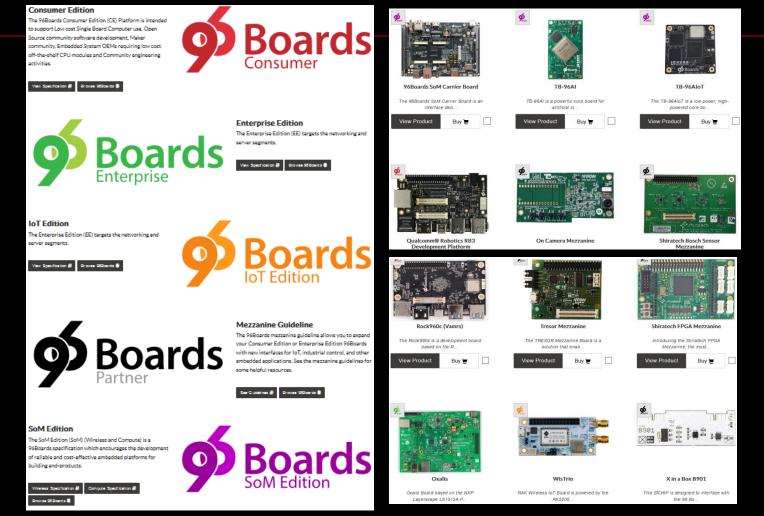
They've been nicely strengthening their memory model, to the point that these days it's actually one of the better ones. They even seem to have decided that 18 coherency matters. Good for them. Doing cache coherency in software is crazy, and people who think it's a good idea don't understand the complexities of reality. Maybe some day it will even become architectural.

And I have to say, I like the direction ARM is going with vector math a lot more than the AVX512 that Intel is pushing. I don't know how well it works in practice, but the whole "let's try to do something that works for different vector lengths" is laudable. I'm quite tired of the model where Intel introduces yet another incompatible model every few years.

I still will hold judgement until we actually see widely available hardware that people actually can use for development and deployment. I've just seen too many promises and "released" hardware that never went anywhere and nobody really had reasonably available.

In particular, I do wish they didn't push the "hyperscale" design so much. Maybe they got the scaling working, but honestly, I doubt it. It just takes time and effort and learning. Don't try to jump to 64-128 core targets until you've had a few years of just plain getting something like a "simple" 8-core one right. Which they haven't actually demonstrated, so far.

But hey, maybe they'll surprise me.

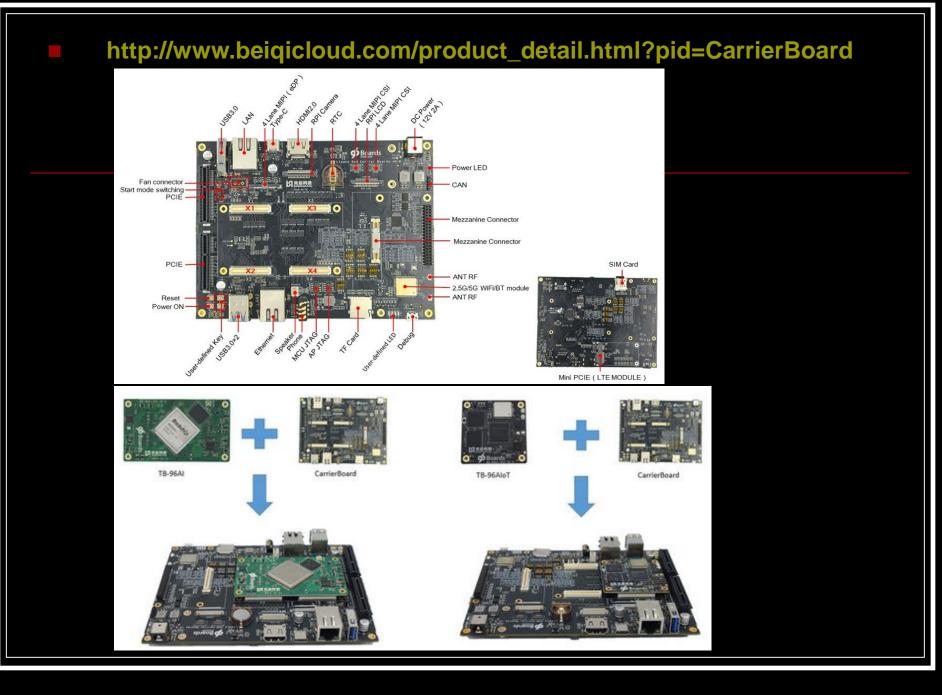

Linus

antirez 20 hours ago | parent | favorite | on: Linus Torvalds on Why ARM Won't Win the Server Spa...

It's extremely hard to agree with Linus on that. One problem in his argument is that he believes that everybody has a kernel hacker mindset: most today's developers don't care about environment reproducibility at architecture level. The second problem is that he believes that every kind of development is as platform sensitive as kernel hacking, and he even makes the example of Perl scripts. The reality is that one year ago I started the effort to support ARM as a primary architecture for Redis, and all I had to do is to fix the unaligned accesses, that are anyway fixed in ARM64 almost entirely, and almost fixed also in ARM >= v7 if I remember correctly, but for a subset of instructions (double words load/stores). Other than that, Redis, that happens to be a low level piece of code, just worked on ARM, with all the tests passing and no stability problems at all. I can't relate to what Linus says there. If a low level piece of code written in C, developed for many years without caring about ARM, just worked almost out of the box, I can't see the Ruby or Node application to fail once uploaded to an ARM server.

<u>Linaro</u> ■ htt	tps://www.lina	ro.org/					
	Linaro helps you work with the latest open source technology, building support in upstream projects and ensuring smooth product roll outs and secure software updates. Instead of duplicating effort, members share engineering costs to accelerate innovation and time to market.						
•	Datacenter & Cloud	Edge & Fog Computing	Consumer	loT & Embedded			

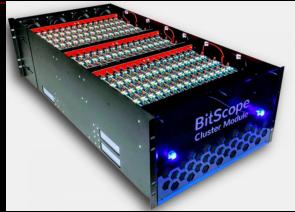
96boards https://www.96boards.org/ https://www.96boards.org/specifications/



<u>SOM/COM</u>

- https://www.linaro.org/news/linaro-announces-launch-of-96boards-system-on-module-som-specification/
- http://linuxgizmos.com/linaro-launches-two-96boards-somspecifications/
- http://static.linaro.org/assets/specifications/ 96BoardsComputeSoMSpecificationV1.0.pdf
- https://static.linaro.org/assets/specifications/ 96BoardsWirelessSoMSpecificationV1.0.pdf

Newly released for ArmTechCon 2018, the miniNodes Raspberry Pi 3 Computer on Module (CoM) 5-node Carrier Board enables extreme edge computing and IoT workload processing in a small, easy to use platform. Final engineering is wrapping up, so we are opening up Preorders, with expected delivery in February / March 2019.



3.2 Clustering BitScope Pi Cluster

http://cluster.bitscope.com/

Scalable clusters make HPC R&D easy as Raspberry Pi

CLUSTER MODULE

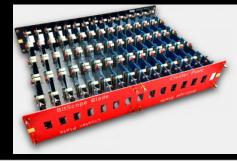
The basic building block of scalable BitScope Clusters.

High Density, Low Cost

Each module packs 144 active nodes, six spare nodes and one cluster manager node in a single 6U drawer. Build a 1000 node cluster in 42U for less than \$150/node.

Low Power, Low Heat

At less than **5W/node** in typical operation you need only **6kW** to run **1000 nodes** including network fabric and air flow.


Highly Affordable

The world's most cost effective scalable solution. Inexpensive to build, operate and maintain.

Perfect for Research

Develop new cluster architectures that scale at very low cost before commiting to production designs.

CLUSTER PACK

The key building block of every Cluster Module

Power & Mounting Solution

Cluster Packs simplify the mounting of thousands of nodes

They route and regulate power to every node, locally.

No Wires, No Problems

Power the packs and you power the cluster

Extremely Flexible

Built with the amazing ARM based Raspberry Pi. Many software options and a vast developer community.

Ideal for Education

The world's leading computing education platform can now be used to teach network, cluster and cloud computing. All open source.

Oracle RPi Supercomputer

https://www.servethehome.com/oracle-shows-1060-raspberrypi-supercomputer-at-oow/ Oracle Shows 1060 Raspberry Pi Supercomputer

<u>What's the matter</u>

https://www.servethehome.com/aoa-analysis-marvellthunderx2-equals-190-raspberry-pi-4/

Raspberry Pi Units	
Raspberry Pi 4 4GB	\$55.00
PoE Hat	\$20.00
3M Ethernet Cable	\$1.50
Case	\$7.00
Total RPi Unit Cost	\$83.50
Rack Hardware	
Rack Shelf	\$78
1/48th Rack Shelf	\$1.63
PoE Switches and Cables	
PoE Switch Mikrotik CRS328-24P-4S+-RM	\$350
2x SFP+ Uplink Cables	\$50
1/24th PoE Network	\$16.67
Network Aggregation Layer	
Aggregation SFP+ Switch	\$500
1/288th Aggregation SFP+ Switch	\$1.74
Storage	
FreeNAS Mini XL+ 24TB Raw	\$2,400
1/288th Shared Storage	\$8.33
Total Per RPi 4 in CI/CD Cluster	r
Total Cost Per RPi 4 4GB	\$111.86

3.3 New Technologies in the Arm Architecture <u>SVE2 & TME</u>

https://community.arm.com/developer/ip-products/processors/b/ processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-

architecture

Scalable Vector Extension v2

Improved scalability

Vectorization of more workloads

Built on the SVE foundation.

- Scalable vectors with hardware choice from 128 to 2048 bits.
- Vector-length agnostic programming for "write once, run anywhere".
- Predication and gather/scatter allows more code to be vectorized.
- Tackles some obstacles to compiler auto-vectorisation.

Scaling single-thread performance to exploit long vectors.

- SVE2 adds NEON[™]-style fixed-point DSP/multimedia plus other new features.
- Performance parity and beyond with classic NEON DSP/media SIMD.
- Tackles further obstacles to compiler auto-vectorization.

Enables vectorization of a wider range of applications than SVE.

- Multiple use cases in Client, Edge, Server and HPC.
 - DSP, Codecs/filters, Computer vision, Photography, Game physics, AR/VR, Networking, Baseband, Database, Cryptography, Genomics, Web serving.
- Improves competitiveness of Arm-based CPU vs proprietary solutions.
- Reduces s/w development time and effort.

Source: "New Technologies in the Arm Architecture", Nigel Stephens(Fellow, Arm Ltd) Linaro Connect 2019(Bangkok)

Transactional Memory Extension

Hardware Transactional

Memory

Hardware Transactional Memory (HTM) for the Arm architecture.

- Improved competitiveness with other architectures that support HTM.
- Strong isolation between threads.
- Failure atomicity.

Scaling multi-thread performance to exploit many-core designs.

- Database.
- Network dataplane.
- Dynamic web serving.

Improved scalability

Simpler software design

Simplifies software design for massively multi-threaded code.

• Supports Transactional Lock Elision (TLE) for existing locking code.

• Low-level concurrent access to shared data is easier to write and debug.

Enabling tools and documentation

LLVM

- Upstreaming of SVE2/TME assembly support to begin immediately.
- Goal of initial SVE2 auto-vectorization & ACLE upstream by end Q1 CY20.

GNU Tools

- Upstreaming of SVE2/TME assembly, initial SVE2 auto-vectorization & ACLE to begin immediately. (SVE autovec present since GCC8).
- Targeting GCC10 release at end Q1 CY20.

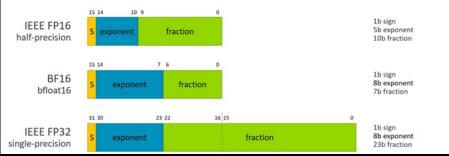
Glibc

• Aiming for Transactional Lock Elision support in upstream Glibc by Q3 CY19.

Arm Tools

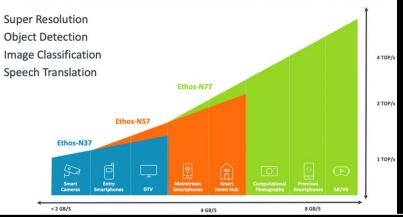
• SVE2/TME support in Arm compiler, debugger and fast models planned for H2 CY2019.

Documentation


- SVE2/TME ISA XML available by 15 April 2019.
 <u>developer.arm.com/architectures</u>.
- SVE literature at <u>developer.arm.com/hpc</u>.
 - No ABI changes required by SVE2.
- SVE2 literature including VLA programmer's guide with code examples available soon.

Source: "New Technologies in the Arm Architecture", Nigel Stephens(Fellow, Arm Ltd) Linaro Connect 2019(Bangkok)

<u>A</u>

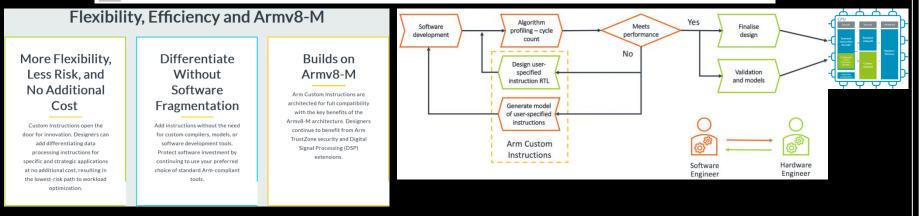

https://community.arm.com/developer/ip-products/processors/b/ml-ipblog/posts/bfloat16-processing-for-neural-networks-on-armv8_2d00_a

The next revision of the Armv8-A architecture will introduce Neon and SVE vector instructions designed to accelerate certain computations using the BFloat16 (BF16) floating-point number format. BF16 has recently emerged as a format tailored specifically to high-performance processing of Neural Networks (NNs). BF16 is a truncated form of the IEEE 754 [ieee754-2008] single-precision representation (IEEE-FP32), which has only 7 fraction bits, instead of 23 (see Figure 1).

https://www.arm.com/company/news/2019/10/new-arm-ip-bringsintelligent-immersive-experiences-to-mainstream-markets

Arm Ethos NPU Family Enables Multiple IP Choices For Devices

<u>A</u>


- https://www.arm.com/company/news/2019/10/arm-enables-custominstructions-for-embedded-cpus?utm_source=twitter&utm_medium= social&utm_campaign=2019_techcon-marketing_mk17_na-&utm_term= arm-enables-custom-instructions&utm_content=press-release
- https://www.arm.com/why-arm/technologies/custom-instructions
- https://developer.arm.com/architectures/instruction-sets/ custom-instructions

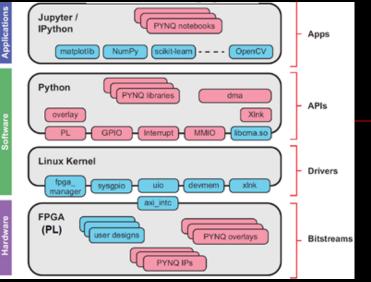
Arm Custom Instructions for the <u>Armv8-M architecture</u> enable you to push performance and efficiency further by adding application domain specific features in small embedded processors, while maintaining all the advantages of Arm's software ecosystem.

Arm Custom Instructions allow you to add a customizable module, called configuration space, inside the <u>Cortex-M33 processor</u>. This module is driven by the pre-decoded instructions and shares the same interface as the standard arithmetic logic unit (ALU) of the CPU. Adding custom instructions to a customizable CPU requires two steps:

Providing a configuration file that lists the regions you want to use for adding your own custom instructions.

2 Building the data path for your own custom instructions and integrating it into the configuration space.

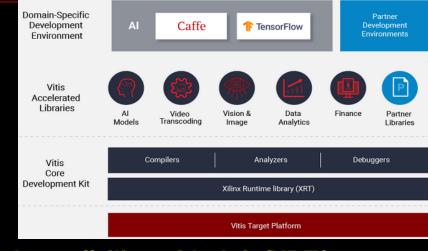
http://www.pynq.io/


PYNQ is an open-source project from Xilinx® that makes it easy to design embedded systems with Xilinx Zynq® Systems on Chips (SoCs).

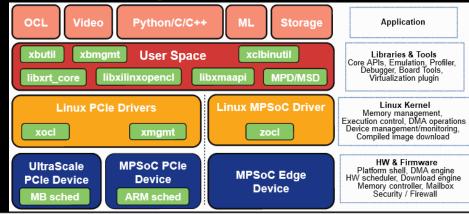
Using the Python language and libraries, designers can exploit the benefits of programmable logic and microprocessors in Zynq to build more capable and exciting embedded systems. PYNQ users can now create high performance embedded applications with

- parallel hardware execution
- high frame-rate video processing
- hardware accelerated algorithms
- real-time signal processing
- high bandwidth IO
- low latency control

https://www.96boards.org/product/ultra96/ (~250\$

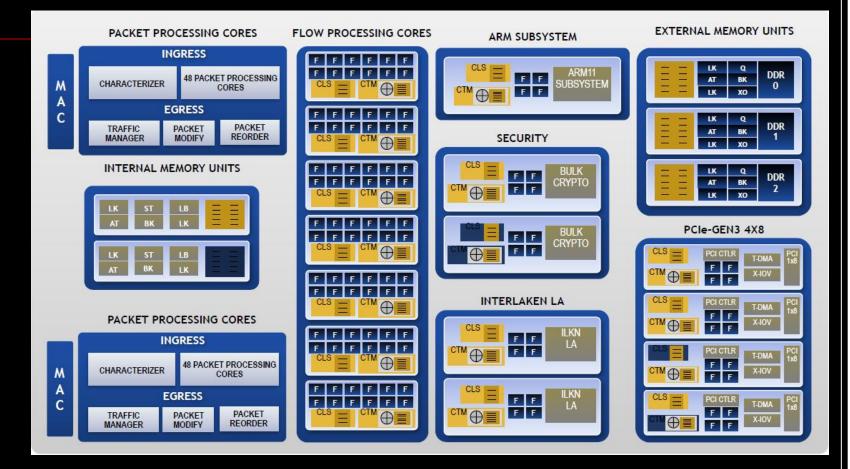


- Xilinx Zynq UltraScale+ MPSoC ZU3EG A484
- Micron 2 GB (512M x32) LPDDR4 Memory
- Delkin 16 GB microSD card + adapter
- PetaLinux environment available for download
- Microchip Wi-Fi / Bluetooth
- Mini DisplayPort (MiniDP or mDP)
- 1x USB 3.0 Type Micro-B upstream port
- 2x USB 3.0, 1x USB 2.0 Type A downstream ports
- 40-pin 96Boards Low-speed expansion header
- 60-pin 96Boards High-speed expansion header
- 85mm x 54mm form factor
- Linaro 96Boards Consumer Edition compatible


3.4 FPGA <u>Xilinx Vitis & XRT</u>

https://www.xilinx.com/products/design-tools/vitis.html

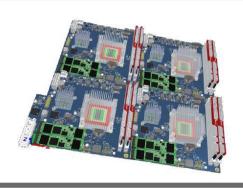
Unified software platform for all developers

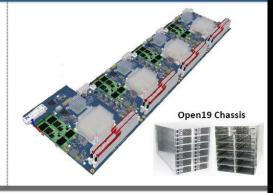


https://xilinx.github.io/XRT/

3.5 SmartNIC

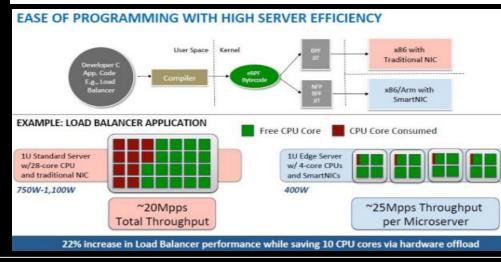
https://www.nextplatform.com/2018/08/06/living-in-the-smartnic-future/ Netronome NFP-6XXX DETAILED BLOCK DIAGRAM



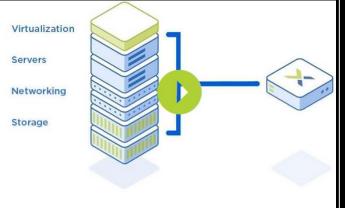

<u>Use Case</u>

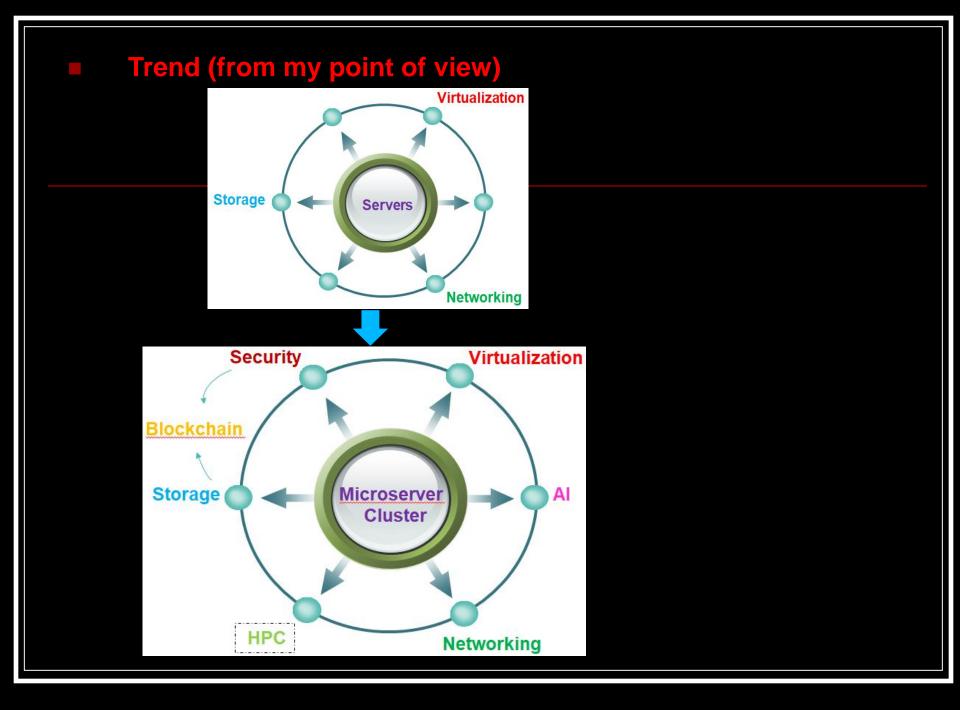
https://www.servethehome.com/packet-launching-microserversnetronome-smartnics-epyc-surprise/

INNOVATIVE EDGE CLOUD MICROSERVER FORM FACTORS


Standard 1U Form Factor Solution with 4 Microservers and Integrated Netronome SmartNIC Open19-based Solution with 4 Microservers and Integrated Netronome SmartNIC

© 2018


NETRONUME



3.6 HCI (Hyper-Converged Infrastructure)

- https://en.wikipedia.org/wiki/Hyper-converged_infrastructure
- software-defined IT infrastructure that virtualizes all of the elements of conventional "hardware-defined" systems...
 - https://www.nutanix.com/hyperconverged-infrastructure

Hyperconverged infrastructure (HCI) combines common datacenter hardware using locally attached storage resources with intelligent software to create flexible building blocks that replace legacy infrastructure consisting of separate servers, storage networks, and storage arrays. Benefits include lower TCO, increased performance, and greater productivity within IT teams.

4) Summary

- Global Edge Computing Market is keep on growing, which mainly driven by the burst of Internet of Thing
- Hardware and software vendors in Edge computing like "Let a hundred flowers bloom"
- Currently, there is no dominant solution provider at Edge like what AWS, GCP, and Aliyun does at Cloud
 - Due to the diverse requirement for Edge Computing, and considering it may meet the resource limitation problem when comparing with Cloud Computing, so a lightweight and flexible solution with high cost-performance ratio is still very attractive

II. Overall Design

1) Design Goals & Principles

<u>Goals</u>

. . .

- a lightweight Edge Computing solution with high costperformance ratio
- flexible and modular architecture
- scale out, not scale up
- meet the trend for Hyper-Converged Infrastructure at Edge

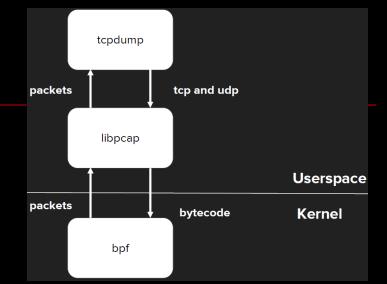
Principles

- no JVM based project is considered
 - (so Spark, Flink, Kafka, ElasticSearch are excluded...)
- reduce the dependencies for Go-based project to least
 - (though it is difficult to do so...)
- make project code reusable and self-contained as much as possible
 -

2) Hardware Platform ARM is the best choice in current stage (from my point of view) high cost-performance ratio development boards an increasingly mature ecosystem a lot of vendors to choose from lower power consumption ARM is ruling IoT and Embedded the major FPGA vendor Xilinx uses ARM as hardware cores on their Reconfigurable Computing platform

may migrate to ARM, X86, RISC-V Hybrid Architecture in the near future, but ARM is still first class

3) Why is eBPF


- 3.1 BPF (Berkeley Packet Filter, aka cBPF)
- https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
- http://www.tcpdump.org/papers/bpf-usenix93.pdf
- History
 - Before BPF, each OS (Sun, DEC, SGI etc) had its own packet filtering API
 - In 1993: Steven McCanne & Van Jacobsen released a paper titled the BSD Packet Filter (BPF)
 - Implemented as "Linux Socket Filter" in kernel 2.2
 - While maintaining the BPF language (for describing filters), uses a different internal architecture

Source: ebpfbasics-190611051559.pdf

What is it

. . .

- Network packet filtering, Seccomp
- Filter Expressions → Bytecode → Interpret
- Small, in-kernel VM, Register based, switch dispatch interpreter, few instructions
- BPF uses a simple, non-shared buffer model made possible by today's larger address space Source: ebpfbasics-190611051559.pdf

- Bytecode, register based VM, with a limited instruction set
- Runs in-kernel, designed for fast packet filtering
- 32-bit instructions (LOAD, STORE, ALU, BRANCH, RETURN)
- 2, 32-bit registers (A, X), hidden frame pointer

Source: understandingebpfinahurry-190611040804.pdf

https://blog.cloudflare.com/bpf-the-forgotten-bytecode/

3.2 eBPF (extended BPF)

- since Linux Kernel v3.15 and ongoing
- aims at being a universal In-Kernel virtual machine
- a simple way to extend the functionality of Kernel at runtime
- "dtrace for Linux"

BPF Features by Linux Kernel Version

https://github.com/iovisor/bcc/blob/master/docs/ kernel-versions.md

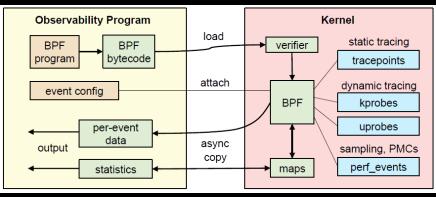
Instruction Set

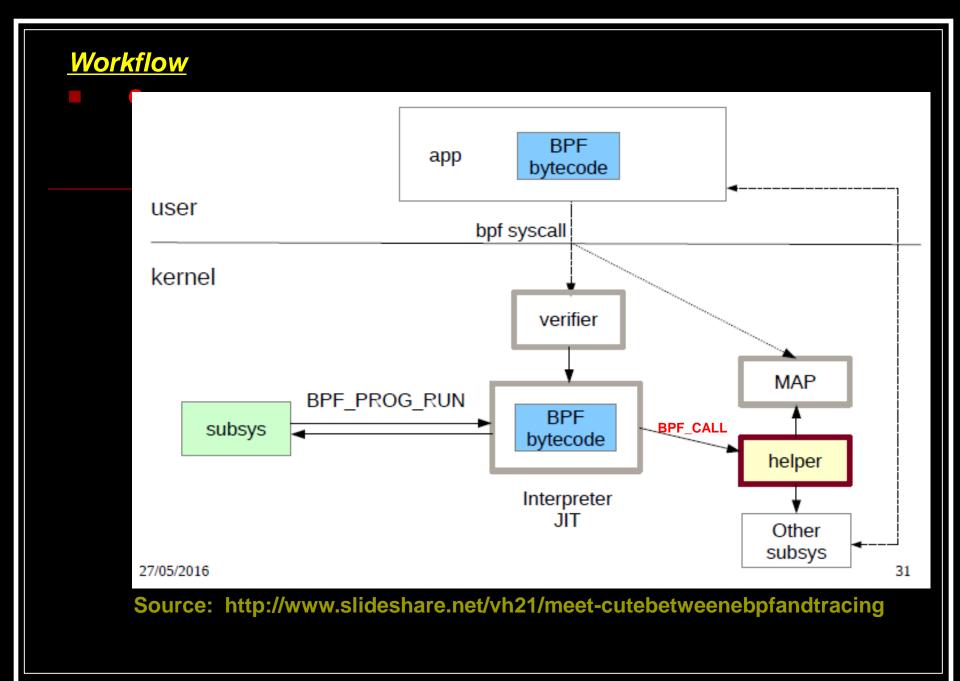
https://github.com/iovisor/bpf-docs/blob/master/eBPF.md

Projects using eBPF

http://cilium.readthedocs.io/en/latest/bpf/#projects-using-bpf

Good Resource


https://github.com/zoidbergwill/awesome-ebpf


What is it

- User-defined, sandboxed bytecode executed by the kernel
- VM that implements a RISC-like assembly language in kernel space-
- Similar to LSF, but with the following improvements:
 - More registers, JIT compiler (flexible/ faster), verifier
 - Attach on Tracepoint, Kprobe, Uprobe, USDT
 - In-kernel trace aggregation & filtering
 - Control via bpf()
 - Designed for general event processing within the kernel
 - All interactions between kernel/ user space are done through eBPF "maps"

Source: ebpfbasics-190611051559.pdf

Source: https://kernel-recipes.org/en/2017/talks/performance-analysis-with-bpf/

<u>Internals</u>

Pls refer to my presentation "eBPF in Action" at LC3 Beijing (on Jun 25, 2018)

\$KERNEL_SRC/Documentation/networking/filter.txt https://kernelnewbies.org/Linux_5.3

6. Tracing, perf and BPF

BPF

 libbpf: Add BTF-to-C dumping support, allowing 	to output a subset of BTF types as a compilable C type definitions. This is useful by itself,
as raw BTF output is not easy to inspect and co	mprehend. But it's also a big part of BPF CO-RE (compile once - run everywhere) initiative
aimed at allowing to write relocatable BPF prog	rams, that won't require on-the-host kernel headers (and would be able to inspect internal
kernel structures, not exposed through kernel he	eaders) commit 🕑 , commit 🥝 , commit 🕑 ,
commit 🕑 , commit 🥑 , commit 🕑 , commit 🕑 , co	ommit 🕑

- Implements initial version (as discussed at LSF/MM2019 conference) of a new way to specify BPF maps, relying on BTF type information, which allows for easy extensibility, preserving forward and backward compatibility commit C, commit
- Adds support for propagating congestion notifications to TCP from cgroup inet skb egress BPF programs commit C, commit C, commit C, commit C, commit C, commit C
- Add so_detach_ReusePort_BPF to detach BPF prog from reuseport sk commit ♂, commit ♂
- Add a sock_ops callback that can be selectively enabled on a socket by socket basis and is executed for every RTT. BPF program frequency can be further controlled by calling bpf_ktime_get_ns and bailing out early commit C, c
- Allow CGROUP_SKB programs to use bpf_skb_cgroup_id () helper commit C
- Eliminate zero extensions for sub-register writes commit C, comm
- Export bpf_sock for BPF_PROG_TYPE_CGROUP_SOCK_ADDR prog type commit C and for BPF_PROG_TYPE_SOCK_OPS prog type commit C
- allow wide (u64) aligned stores for some fields of bpf_sock_addr commit C, commit C, commit C
- Adds support for fq's Earliest Departure Time to HBM (Host Bandwidth Manager) commit G
- Introduces verifier support for bounded loops and other improvements commit C, commi
- bpf: getsockopt and setsockopt hooks commit C, commit

libbpf: add bpf_link and tracing attach APIs commit C, commit C

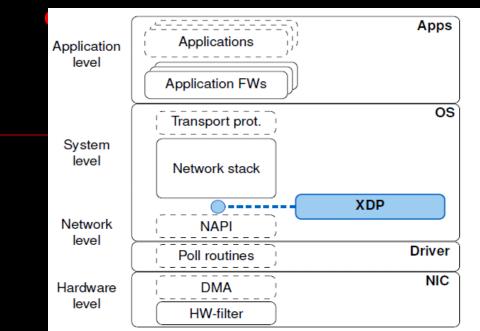
. . .

<u>Comparison</u>

	cBPF	eBPF			
Register	Two 32 bit registers: A: accumulator X: indexing	Eleven 64 bit registers: R0: return value/exit value R1-R5: arguments R6-R9: callee saved registers R10: read-only frame pointer			
Instruction	~30 opcode:16 jt:8 jf:8 k:32	∼90 op:8 dst:4 src:4 off:16 imm:32			
JIT	Support	Support (better mapping with newer architectures for JITing)			
Toolchain	GCC, tools/net	LLVM eBPF backend			
Platform	x86_64, ARM, ARM64, SPARC, PowerPC, MIPS and s390	x86-64, aarch64, s390x			
System Call		<pre>#include <linux bpf.h=""> int bpf(int cmd, union bpf_attr *attr, unsigned int size (CALL, MAP, LOAD)</linux></pre>			
Application	tcpdump apply for seccomp filters, traffic control	DDoS Mitigation, Intrusion Detection, Container Security, SDN Configuration, Observability			

bpf() system call http://www.man7.org/linux/man-pages/man2/bpf.2.html

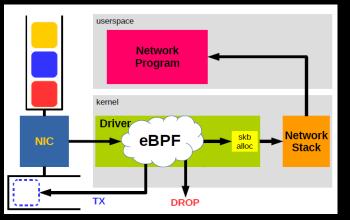
<u>XDP (eXpress Data Path)</u>


- https://www.iovisor.org/technology/xdp
- https://lwn.net/Articles/708087/ //Debating the value of XDP
 Generic hook

XDP is a further step in evolution and enables to run a specific flavor of BPF programs from the network driver with direct access to the packet's DMA buffer. This is, by definition, the earliest possible point in the software stack, where programs can be attached to in order to allow for a programmable, high performance packet processor in the Linux kernel networking data path.

Source: https://github.com/cilium/cilium

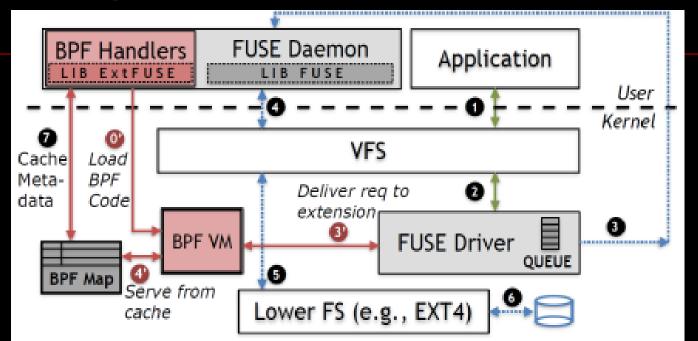
- Native XDP & Generic XDP
 - XDP requires implementation in each driver
 - Need to choose XDP-supported driver
 - Not so handy
 - Generic XDP allows you to use XDP on any driver (kernel 4.12)
 - XDP implemented in network stack
 - Convert skb to xdp buffer
 - Not as fast as native (non-generic) XDP
 - Need skb allocation at drivers
 - Packet buffer copy to meet XDP requirements
 - Good for functionality testing, etc.


Source: "Veth XDP--XDP for containers", Toshiaki Makita & William Tu, NetDev 2019

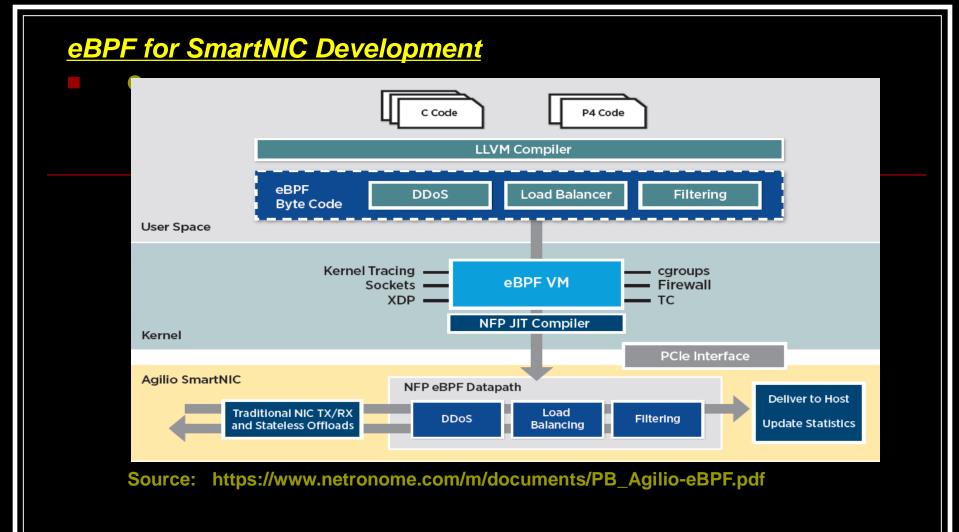
eXpress Data Path

- First line of defense
- Coarse but efficient filtering
- → Protection against DoS attacks

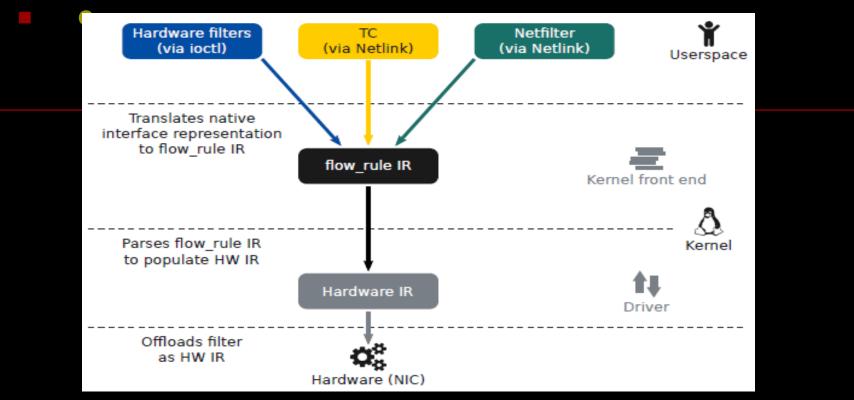
Source: https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ ITC30-Packet-Filtering-eBPF-XDP-slides.pdf


Source: https://www.slideshare.net/lcplcp1/xdp-and-ebpfmaps

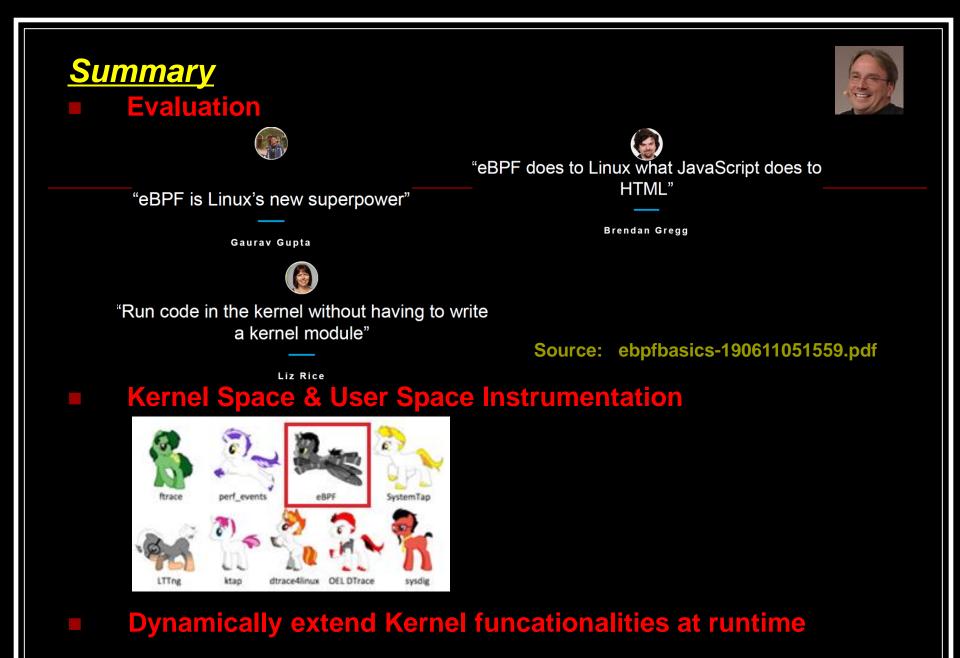
- eBPF trigger actions based on return codes
 - XDP_DROP very fast drop by recycling
 - DDoS mitigation
 - XDP_PASS pass possibly modified packet to network stack
 Handle and pop new unknown encap protocols
 - XDP_TX Transmit packet back out same interface
 - Facebook use it for load-balancing, and DDoS scrubber
 - XDP_ABORTED also drop, but indicate error condition
 - Tracepoint: xdp_exception
 - XDP_REDIRECT Transmit out other NICs
 - Very new (est.4.14), (plan also use for steering packets CPUs + sockets)


Source: http://people.netfilter.org/hawk/presentations/ theCamp2017/theCamp2017_XDP_eBPF_technology_Jes per_Brouer.pdf

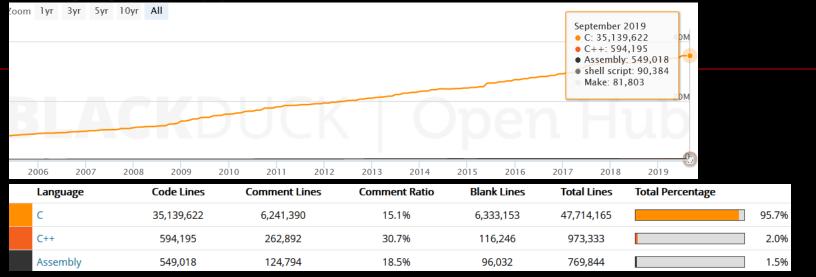
<u>eBPF for Storage Subsystem</u>


eBPF can also be used for Storage, project **ExtFuse** (https://github.com/extfuse) shows its potential in this field.

Source: https://www.phoronix.com/scan.php?page=news_item&px=ExtFUSE-Faster-FUSE-eBPF



emerging project flow rule


Source: https://fosdem.org/2019/schedule/event/network_filtering_with_bpf/ https://lwn.net/Articles/775046/

development is "100% driven by use cases"	
https://lwn.net/Articles/801871/	
BPF Contributors	
380 Daniel Borkmann (Cilium, Maintainer)	T
161 Alexei Starovoitov (Facebook, Maintainer)	Top contributors of
160 Jakub Kicinski Netronome	the total 186
110 John Fastabend (Cilium)	contributors to BPF
96 Yonghong Song (Facebook)	from January 2016 to
95 Martin KaFai Lau (Facebook)	November 2018.
94 Jesper Dangaard Brouer (Red Hat)	
74 Quentin Monnet (Netronome)	
45 Roman Gushchin (Facebook)	
45 Andrey Ignatov (Facebook)	
Source: "BPFTurning Linux into a Microservices-aware Operating Syste	m", Thomas Graf

Polyglot VM

Changing the way you think about Linux Kernel development:

Source: https://www.openhub.net/p/linux/analyses/latest/languages_summary

The Next Linux Superpower:

User Space/Kernel Space Repartition & Unifying Reconstructing nearly every aspect of Linux Networking and Security subsystem

4) eBPF Development4.1 Toolchain

<u>LLVM</u>

- eBPF backend firstly introduced in LLVM 3.7 release
- http://llvm.org/docs/CodeGenerator.html#the-extendedberkeley-packet-filter-ebpf-backend
 - Enabled by default with all major distributions
 - Registered targets: llc --version
 - llc's BPF -march options: bpf, bpfeb, bpfel
 - llc's BPF -mcpu options: generic, v1, v2, probe
 - Assembler output through -S supported
 - llvm-objdump for disassembler and code annotations (via DWARF)
 - Annotations correlate directly with kernel verifier log
 - Outputs ELF file with maps as relocation entries
 - Processed by BPF loaders (e.g. iproute2) and pushed into kernel

Source: https://ossna2017.sched.com/event/BCsg/making-the-kernels-networking-datapath-programmable-with-bpf-and-xdp-daniel-borkmann-covalent

- **\$LLVM_SRC/lib/Target/BPF**
- http://cilium.readthedocs.io/en/latest/bpf/
- LLVM 9.0 Released With Ability To Build The Linux x86_64

<u>GCC (GCC support for eBPF is on the way)</u>

- https://www.phoronix.com/scan.php?page=news_item&px=G NU-Binutils-eBPF-Support
 - //GNU Binutils Begins Landing eBPF Support
 - https://www.phoronix.com/scan.php?page=news_item&px=G CC-10-eBPF-Backend-Plans
 - //Oracle Is Aiming To Contribute An eBPF Backend To The GCC 10 Compiler
- https://www.phoronix.com/scan.php?page=news_item&px=0 racle-More-DTrace-Linux-eBPF
 - //Oracle Is Working To Upstream More Of DTrace To The Linux Kernel & eBPF Implementation
- https://www.phoronix.com/scan.php?page=news_item&px=O racle-GCC-10-eBPF-V2
 - //2019-8-17::Oracle Continues Working On eBPF Support For GCC 10
- https://www.phoronix.com/scan.php?page=news_item&px=G CC-10-eBPF-Port-Lands //GCC 10 Lands The eBPF Port For Targeting The Linux In-Kernel VM

<u>Status</u>

- Phase 1: add eBPF target to the toolchain
 - bpf-unknown-none
 - binutils (upstream since May 2019)
 - GCC (upstream since September 2019)
 - Phase 2: make the generated programs palatable for the kernel loaders and verifier, and keep it that way.
- Phase 3: provide development goodies for eBPF developers
 - GNU simulator
 - GDB

Source: "eBPF support in the GNU Toolchain", Jose E. Marchesi (Oracle), Linux Plumbers Conference 2019

4.2 BCC (BPF Compiler Collection)

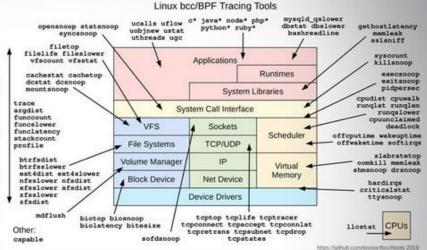
https://www.infoworld.com/article/3444198/the-best-opensource-software-of-2019.html

BPF Compiler Collection (BCC)

BCC is a toolkit for creating efficient kernel tracing and manipulation programs, and includes severa examples. It makes use of extended BPF (Berkeley Packet Filters), formally known as eBPF, a new fr added to Linux 31:5. Much of what BCC uses requires Linux 4.1 and above.

eBPF was described by Ingo Molnár as:

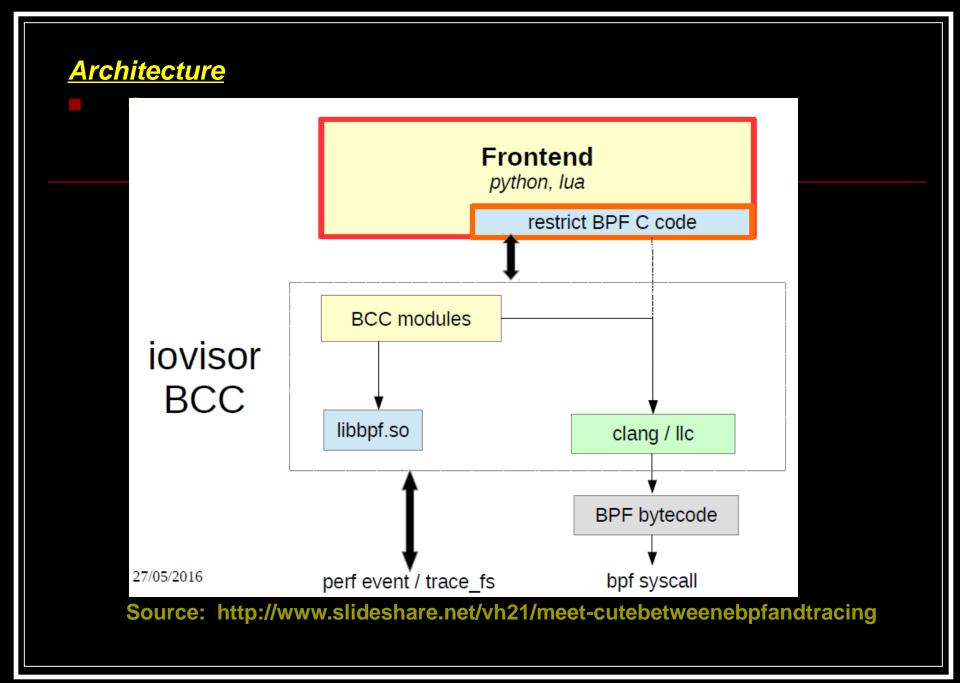
One of the more interesting features in this cycle is the ability to attach eBPF programs (user-det bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live never crash, hang or interfere with the kernel negatively.


BCC makes BPF programs easier to write, with kernel instrumentation in C (and includes a C wrapp) front-ends in Python and lua. It is suited for many tasks, including performance analysis and networ

Screenshot

This example traces a disk I/O kernel function, and populates an in-kernel power-of-2 histogram of efficiency, only the histogram summary is returned to user-level.

# ./bitehist.py		
Tracing Hit Ctr	1-C to end.	
kbytes	: count	distribution
8 -> 1	3.3	1
2 -> 3	5.0	I
4 -> 7	: 211	
8 -> 15	1.0	1
16 -> 31	1.0	1
32 -> 63	1.0	1
64 -> 127	1.1	1
128 -> 255	: 800	


InfoWorld

<u>What is it</u>

https://github.com/iovisor/bcc/

3,165 commits	🖗 28 branches		🟷 20 releases	235 contributors		ф Apache-2.0
• Python 42.2%	● C++ 32.2%	● C 12.0%	● Lua 10.2%	• CMake 1.3%	• Yacc 0.7%	• Other 1.4%

- a toolkit with Python/Lua frontend for compiling, loading, and executing BPF programs, which allows user-defined instrumentation on a live kernel image:
- compile BPF program from C source
- attach BPF program to kprobe/uprobe/tracepoint/USDT/socket
- poll data from BPF program
- framework for building new tools or one-off scripts
- additional projects to support Go, Rust, and DTrace-style frontend
-

<u>A Sample</u>

https://lwn.net/Articles/747640/ //Some advanced BCC topics

#!/usr/bin/env python

from bcc import BPF
from time import sleep

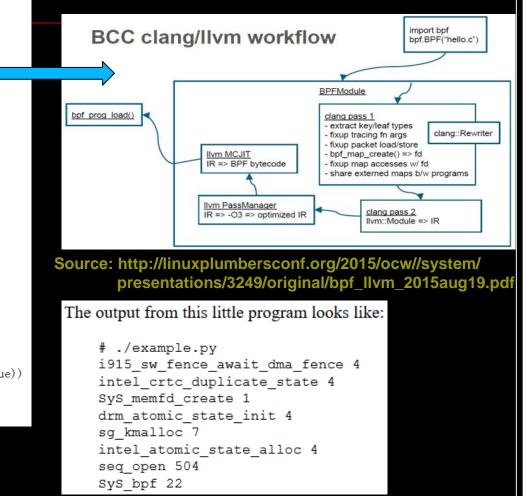
```
program = """
```

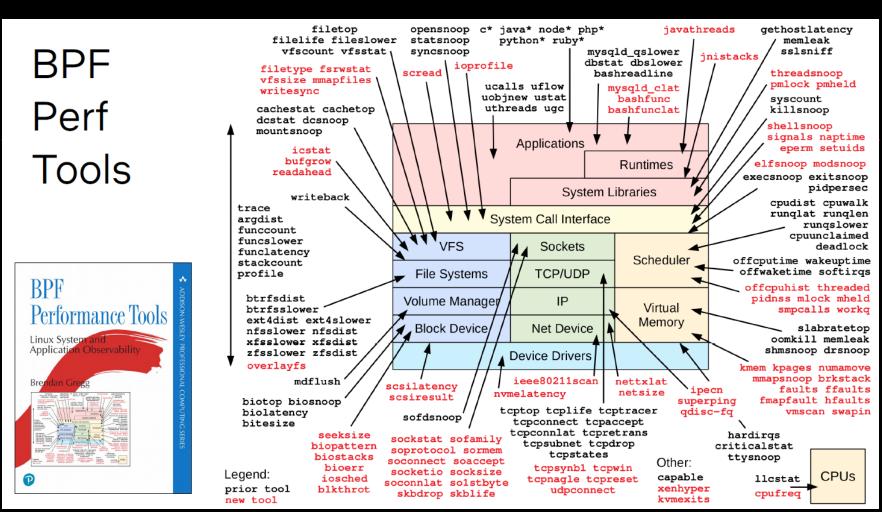
BPF_HASH(callers, u64, unsigned long);

```
TRACEPOINT_PROBE(kmem, kmalloc) {
    u64 ip = args->call_site;
    unsigned long *count;
    unsigned long c = 1;
```

```
count = callers.lookup((u64 *)&ip);
if (count != 0)
     c += *count;
```

```
callers.update(&ip, &c);
```


```
return 0;
```


```
.....
```

```
b = BPF(text=program)
```

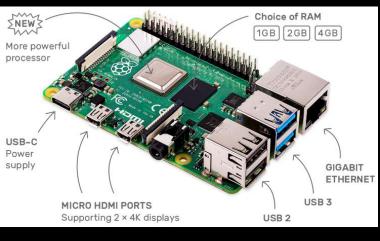
while True:

```
try:
    sleep(1)
    for k, v in sorted(b["callers"].items()):
        print ("%s %u" % (b.ksym(k.value), v.value))
    print
except KeyboardInterrupt:
    exit()
```


Source: "BPF Tracing Tools", Brendan Gregg, Linux Plumbers Conference 2019

<u>development guide</u>

. . .


- https://github.com/iovisor/bcc/blob/master/docs/tutorial.md
- https://github.com/iovisor/bcc/blob/master/docs/reference_gu ide.md
- https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_ python_developer.md

III. Testbed

Development Boards Raspberry Pi 4

- https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
- https://www.cnx-software.com/2019/06/24/raspberry-pi-4-vs-pi-3-whatare-the-differences/

Features/Specs	Raspberry Pi 4B	Raspberry Pi 3 B+
Release date	24th June 2019	14th March 2018
SoC	Broadcom BCM2711 quad-core Cortex-A72 @ 1.5 GHz	Broadcom BCM2837B0 quad-core Cortex-A53 @ 1.4 GHz
GPU	VideoCore VI with OpenGL ES 1.1, 2.0, 3.0	VideoCore IV with OpenGL ES 1.1, 2.0
Video Decode	H.265 4Kp60, H.264 1080p60	H.264 & MPEG-4 1080p30
Video Encode	H.264 1	.080p30
Memory	1GB, 2GB, or 4GB LPDDR4	1GB LPDDR2
Storage	micro	SD card
Video & Audio Output	2x micro HDMI ports up to 4Kp60 3.5mm AV port (composite + audio) MIPI DSI connector	1x HDMI 1.4 port up to 1080p60 3.5mm AV port (composite + audio) MIPI DSI connector
Camera	MIPI CSI	connector
Ethernet	Native Gigabit Ethernet	Gigabit Ethernet over USB (300 Mbps ma x.)
WiFi	Dual band 8	02.11 b/g/n/ac
Bluetooth	Bluetooth 5.0 + BLE	Bluetooth 4.2 + BLE
USB	2x USB 3.0 + 2x USB 2.0	4x USB 2.0
Expansion	40-pin Gl	PIO header
Power Supply	5V via USB type-C up to 3A 5V via GPIO header up to 3A Power over Ethernet via PoE HAT	5V via micro USB up to 2.5A 5V via GPIO header up to 3A Power over Ethernet via PoE HAT
Dimensions	85×5	56 mm
Default OS	Raspbian (after June 24, 2019)	Raspbian (after March 2018)
Price	\$35 (1GB RAM), \$45 (2GB RAM), \$55 (4G B RAM)	\$35 (1GB RAM)

<u>Pros</u>

- high cost-performance ratio (initial price \$55 for RPi4 with 4GB RAM)
- Most active community & ecosystem

<u>Cons</u>

. . .

- More 64bit Linux distributions support is on the way
- Lack of detailed technical docs for CPU, GPU, etc from Broadcom
- ...

1.2 Jetson Nano

https://www.nvidia.com/en-us/autonomous-machines/ embedded-systems/jetson-nano/

Bringing the Power of Modern AI to Millions of Devices

GPU	NVIDIA Maxwell" architecture with 128 NVIDIA CUDA* cores
CPU	Quad-core ARM® Cortex®-A57 MPCore processor
Memory	4 GB 64-bit LPDDR4
Storage	16 GB eMMC 5.1 Flash
Video Encode	4K @ 30 (H.264/H.265)
Video Decode	4K @ 60 (H.264/H.265)
Camera	12 lanes (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 (1.5 Gbps)
Connectivity	Gigabit Ethernet
Display	HDMI 2.0 or DP1.2 eDP 1.4 DSI (1 x2) 2 simultaneous
UPHY	1 x1/2/4 PCIE, 1x USB 3.0, 3x USB 2.0
I/O	1x SDIO / 2x SPI / 6x I2C / 2x I2S / GPIOs
Size	69.6 mm x 45 mm
Mechanical	260-pin edge connector

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

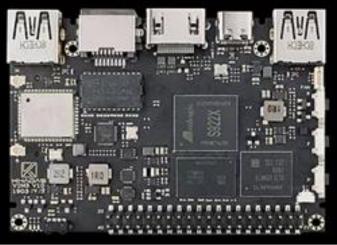
Get started today with the Jetson Nano Developer Kit that brings the power of modern artificial intelligence to a small, easy-to-use platform. Get started fast with the Jetpack SDK and a collection of ready-to-use projects.

DEVELOPER KIT I/OS					
USB	4x USB 3.0, USB 2.0 Micro-B				
Camera Connector	1x MIPI CSI-2 DPHY lanes				
Connectivity	Gigabit Ethernet, M.2 Key E				
Storage	microSD (not included)				
Display	HDMI 2.0 and eDP 1.4				
Others	GPIO, I'C, I'S, SPI, UART				

<u>Pros</u>

high cost-performance ratio (initial price \$99 for devkit) https://tryolabs.com/blog/machine-learning-on-edge-devicesbenchmark-report/

Complete Software Stack


			DEEPSTREAM SDI	(
		S	OFTWARE MODUL	ES		
Depth Estimation	Object Detection	Pose Estimation	Gesture Recognition	Path Planning	• • •	Ecosystem Modules
			JETPACK SDK			
Deep Learning	Computer Visio	on Accelerated C	omputing	Graphics	Multimedia	Sensors
TensorRT cuDNN	VisionWorks OpenCV	cuBLA cuFF		Vulkan DpenGL	libargus Video API	Drivers Ecosystem
CUDA LINUX4TEGRA ROS						
JETSON COMPUTER						

- TensorRT is Open Sourced now
 Cons
- The kernel version is still 4.9
 - Not hacker friendly

1.3 VIM3 Pro

https://www.khadas.com/vim3 Amlogic A311D SBC with 5.0 TOPS NPU

Model	Basic	Pro			
SoC	Amlogic A311D 2.2GHz Quad core ARM Cortex-A73 and 1.8GHz dual core Cortex-A53 CPU ARM G52 MP4 GPU up to 800MHz HW UHD 4K H.265 75fps 10-bit video decoder & low latency 1080p H.265/H.264 60fps encoder Support multi-video decoder up to 4Kx2K@60fps+1x1080P@60fps Dolby Vision and HDR10, HDR10+, HLG and PRIME HDR video processing Build-in Cortex-M4 core for always on processing TrustZone based security for DRM video streaming				
NPU	5 TOPS Performance NPU INT8 inference up to 1536 MAC Supports all major deep learning frameworks including TensorFlow and Caffe				
MCU [1]	STM8S003 with Programmable EEPROM				
SPI Flash	16MB				
LPDDR4/4X [2]	2GB	4GB			
EMMC 5.1	16GB	32GB			

<u>Pros</u>

- Cost–performance ratio (initial price \$139.99)
- Active community & ecosystem ROM support:
 - Android Android TV
 - Armbian Manjaro ARM
 - Ubuntu XFCE
 - LibreELEC
 - CoreELEC
 - OpenWRT

. . .

. . .

<u>Cons</u>

- Does not provide a complete software stack
- Lack of development documents for NPU
- Complex Modes with various buttons in a confined space

1.4 **PYNQ-Z2**

http://www.tul.com.tw/ProductsPYNQ-Z2.html

ZYNQ XC7Z020-1CLG400C

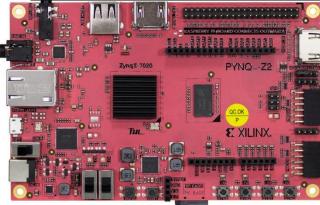
- 650MHz dual-core Cortex-A9 processor
- DDR3 memory controller with 8 DMA channels and 4 High Performance AXI3 Slave ports
- High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO
- Low-bandwidth peripheral controller: SPI, UART, CAN, I2C
- Programmable from JTAG, Quad-SPI flash, and MicroSD card
- Programmable logic equivalent to Artix-7 FPGA
- 13,300 logic slices, each with four 6-input LUTs and 8 flip-flops
- 630 KB of fast block RAM
- 4 clock management tiles, each with a phase locked loop (PLL) and mixed-mode clock manager (MMCM)
- 220 DSP slices
- On-chip analog-to-digital converter (XADC)

Memory

- 512MB DDR3 with 16-bit bus @ 1050Mbps
- 16MB Quad-SPI Flash with factory programmed 48-bit globally unique EUI-48/64[™] compatible identifier
- MicroSD slot

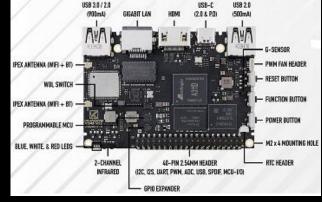
Power

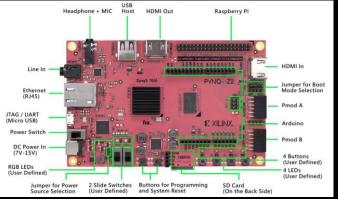
Powered from USB or 7V-15V external power source


USB and Ethernet

- Gigabit Ethernet PHY
- Micro USB-JTAG Programming circuitry
- Micro USB-UART bridge
- USB 2.0 OTG PHY (supports host only)

Audio and Video


- HDMI sink port (input)
- HDMI source port (output)
- I2S interface with 24bit DAC with 3.5mm TRRS jack
- Line-in with 3.5mm jack
- Switches, Push-buttons and LEDs
 - 4 push-buttons
 - 2 slide switches
 - 4 LEDs
 - 2 RGB LEDs
- **Expansion Connectors**
- Two standard Pmod ports
- 16 Total FPGA I/O (8 shared pins with Raspberry Pi connector)
- Arduino Shield connector
- 24 Total FPGA I/O
- 6 Single-ended 0-3.3V Analog inputs to XADC
- Raspberry Pi connector
- 28 Total FPGA I/O (8 shared pins with Pmo A port)



1.5 A development boards cluster <u>Current (as a small PoC platform)</u>

<u>Next Year</u>

 imagining a new development cluster in next yerar with: more powerful Cortex-A76/A77 or even Neoverse development board with >= 8GB LPDDR5 (may plus UFS 3.0 memory card) more powerful GPU development board more powerful AI development board more powerful FPGA development board

....

2) Software Platform2.1 Manjaro

https://manjaro.org

an open-source Linux distribution based on the Arch Linux OS

Rank	Distribution	H.P.D*		Rank	Distribution	HPD*
1	Mint	2880		1	MX Linux	4895
2	Debian	1668-	2016 2010	2	Manjaro	2597
3	Ubuntu	1347-	2016>2019	3	Mint	2048
4	openSUSE	1234		4	Debian	1543
5	elementary	1085-		5	Ubuntu	1398
6	<u>Manjaro</u>	1039		6	elementary	1302
7	Fedora	982	https://www.distrowatch.com	7	Solus	1087
8	Zorin	914-	nups.//www.uistrowatch.com	8	Fedora	992
9	CentOS	773-		9	deepin	847
10	deepin	736▲		10	Zorin	830

one of the first ARM64 Linux distribution that support RPi 4

Get Rospberry PI 4 XFCE	19.08 💙		
XFCE on ARM is the one of t	the fastest D	DE's available	and the

				al contra de la co	
eam and comes with XFCE				D744	
can and comes man wee		Contraction of the		Contraction of the local division of the	
				 K. B. B. B. Phys. K. B. P. AND ALLANDARI ST. K. B. P. AND ALLANDARI ST. K. B. C. P. AND ALLANDARI ST. K. B. C. P. AND ALLANDARI ST. 	
esktop. It's modular and very				A CONTRACTOR AND A CONT	
		THE PARTIES OF	Allen 2011 5 5 5	A REAL PROPERTY AND A REAL	Antonia Annual (New York) Antonia Annual (New York)
	Hargers Linux				
	The Parameter	Constant of the			
	Contraction in some				
	Contractory of the local division of the loc				
		100			
		100 C			

Advantages (from my point of view)

- update packages quickly
- group install
 - https://www.archlinux.org/groups/
- Python 3 is the default Python version now
 - https://hg.python.org/peps/rev/76d43e52d978
- much more stable than expected

manjaro https://w Prepara upgrade	viki.archlinux.org/index.pl	np/Pacman ro RPi4 from v4.19	.x to v5.3.x with all
so on) enabled		# # KVM #	# # Debug
# # eBPF	# # Virtualization # CONFIG VIRTUALIZATION=v	CONFIG KVM=y CONFIG HAVE KVM IROCHIP=y CONFIG HAVE KVM IROFD=y CONFIG HAVE KVM IRO ROUTING=y CONFIG HAVE KVM_EVENTFD=y	# CONFIG_ARCH_HAS_DEBUG_VIRTUAL=y CONFIG_STRIP_ASM_SYMS=y CONFIG_UNUSED_SYMBOLS=y CONFIG_PM_DEBUG=y

CONFIG CGROUP BPF=y CONFIG BPF=y CONFIG BPF SYSCALL=v CONFIG BPF JIT ALWAYS ON=y CONFIG IPV6 SEG6 BPF=y CONFIG NETFILTER XT MATCH BPF=m # CONFIG BPFILTER is not set CONFIG NET CLS BPF=m CONFIG NET ACT BPF=m CONFIG BPF JIT=y CONFIG BPF STREAM PARSER=y CONFIG LWTUNNEL BPF=y CONFIG HAVE EBPF JIT=y CONFIG BPF LIRC MODE2=y CONFIG BPF EVENTS=y # CONFIG TEST BPF is not set # XDP CONFIG XDP SOCKETS=y CONFIG XDP SOCKETS DIAG=m

CONFIG PARAVIRT=y CONFIG PARAVIRT TIME ACCOUNTING=y CONFIG VIRTIO=y CONFIG HAVE VIRT CPU ACCOUNTING GEN=y CONFIG BLK MQ VIRTIO=y CONFIG VIRTIO VSOCKETS=m CONFIG VIRTIO VSOCKETS COMMON=m CONFIG NET 9P VIRTIO=m CONFIG VIRTIO BLK=m CONFIG SCSI VIRTIO=m CONFIG VIRTIO NET=m CONFIG VIRT WIFI=m CONFIG VIRTIO CONSOLE=m CONFIG HW RANDOM VIRTIO=m CONFIG DRM VIRTIO GPU=m CONFIG SND VIRTUOSO=m CONFIG_VIRTIO_MENU=y CONFIG VIRTIO PCI=y CONFIG_VIRTIO_PCI_LEGACY=y CONFIG VIRTIO BALLOON=m CONFIG VIRTIO INPUT=m CONFIG VIRTIO MMIO=m CONFIG RPMSG VIRTIO=m CONFIG CRYPTO DEV VIRTIO=m CONFIG DMA VIRT OPS=y CONFIG_REGULATOR_VIRTUAL_CONSUMER=m CONFIG FB VIRTUAL=m CONFIG DMA VIRTUAL CHANNELS=v #CONFIG VIRTIO PMEM=m #CONFIG VIRTIO IOMMU=m

Miscs # CONETC

CONFIG HAVE KVM MSI=y

CONFIG_KVM_ARM_HOST=y

CONFIG_KVM_ARM_PMU=y

CONFIG IPV6=y

Network

CONFIG KVM VFIO y

CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT=y

CONFIG HAVE_KVM_ARCH_TLB_FLUSH_ALL=y

CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE=y

CONFIG_HAVE_KVM_IRQ_BYPASS=y

CONFIG_KVM_INDIRECT_VECTORS=y

CONFIG IP VS IPV6=y

CONFIG IPV6 MIP6=y

CONFIG IPV6 GRE=m

CONFIG_IPV6_ILA=m

CONFIG_IPV6_VTI=m

#CONFIG_IPV6_FOU=m

CONFIG KVM GENERIC DIRTYLOG READ PROTECT=y

CONFIG IPV6 SEG6 LWTUNNEL=v

CONFIG_IPV6_OPTIMISTIC_DAD=y

CONFIG IPV6 SEG6 HMAC=y

#CONFIG_IPV6_FOU_TUNNEL=m

#CONFIG_AF RXRPC_IPV6=y

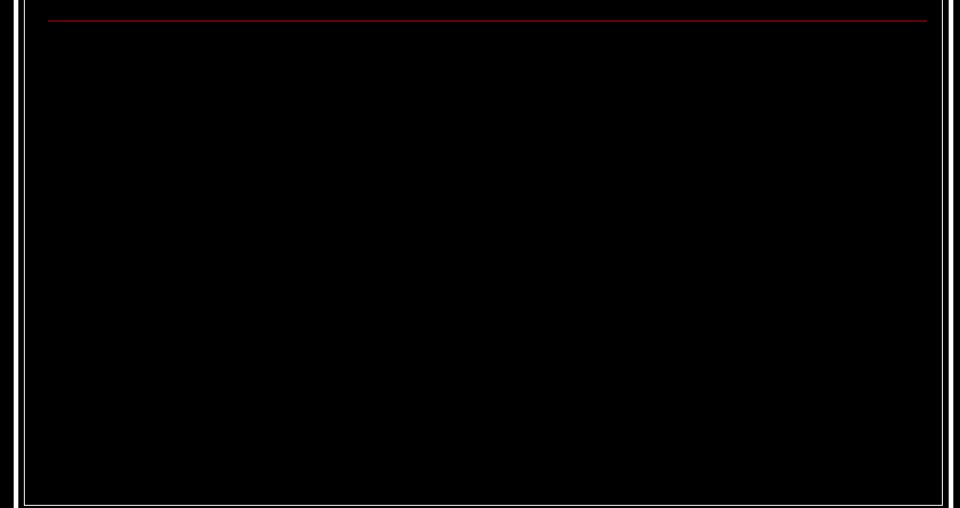
CONFIG_KSM=y CONFIG_PROC_EVENTS=y #CONFIG_IKHEADERS=y CONFIG_REMOTEPROC=m CONFIG_REISERFS_PROC_INF0=y CONFIG_PROC_CHILDREN=y

CONFIG_CMA_DEBUGFS=y CONFIG L2TP DEBUGFS=m CONFIG_6LOWPAN DEBUGFS=y CONFIG_CFG80211_DEBUGFS=y CONFIG_MAC80211_DEBUGFS=y CONFIG DEBUG DEVRES=y CONFIG SCSI DEBUG=m CONFIG DM DEBUG=y CONFIG DM DEBUG BLOCK MANAGER LOCKING=y CONFIG ATH9K DEBUGFS=y CONFIG ATH6KL DEBUG=y CONFIG SUNRPC DEBUG=y CONFIG DLM DEBUG=y CONFIG DYNAMIC DEBUG=y CONFIG DEBUG INFO=y #CONFIG_DEBUG_INF0_DWARF4=y CONFIG_DEBUG_SECTION_MISMATCH=y CONFIG_DEBUG_RODATA_TEST=y CONFIG_DEBUG_VM=y CONFIG_DEBUG_SHIRQ=y CONFIG DEBUG LIST=y CONFIG ARM64 PTDUMP DEBUGFS=y CONFIG_DEBUG_WX=y CONFIG PROC KCORÉ=y CONFIG PROC VMCORE=y CONFIG PROC VMCORE DEVICE DUMP=y CONFIG KEXEC=v # CONFIG KEXEC FILE is not set CONFIG KEXEC CORE=y CONFIG CRASH DUMP=y CONFIG CRASH CORE=y CONFIG CRASH=m CONFIG_FTRACE_SYSCALLS=y CONFIG HWLAT TRACER=y

Pls refer to my presentation "Python for Linux Kernel Debugging' PyCon China Hangzhou (Oct 19, 2019) for details

2.2 Ubuntu

- https://jamesachambers.com/raspberry-pi-ubuntu-server-18-04-2-installation-guide/
- https://ubuntu.com/blog/roadmap-for-official-support-for-theraspberry-pi-4 //Nov 3, 2019


Raspberry Pi 4	Ubuntu Server 19.10	Ubuntu Server 18.04	Ubuntu Core				
1GB							
2GB							
4GB	Upcoming kernel fix						
Current Next Future							

2.3 Fedora

- official support for Raspberry Pi 4 may coming in Fedora 328
- developer friendly
- https://iot.fedoraproject.org

3) Development Model

Fully In-Device development, no cross compilation

IV. Computing, Networking, Storage

- HPC (Heterogeneous Parallel Computing)
 1.1 CUDA
- https://developer.nvidia.com/cuda-zone
- most are closed source
- https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-armenabling-new-path-to-exascale-supercomputing

1.2 ROCm

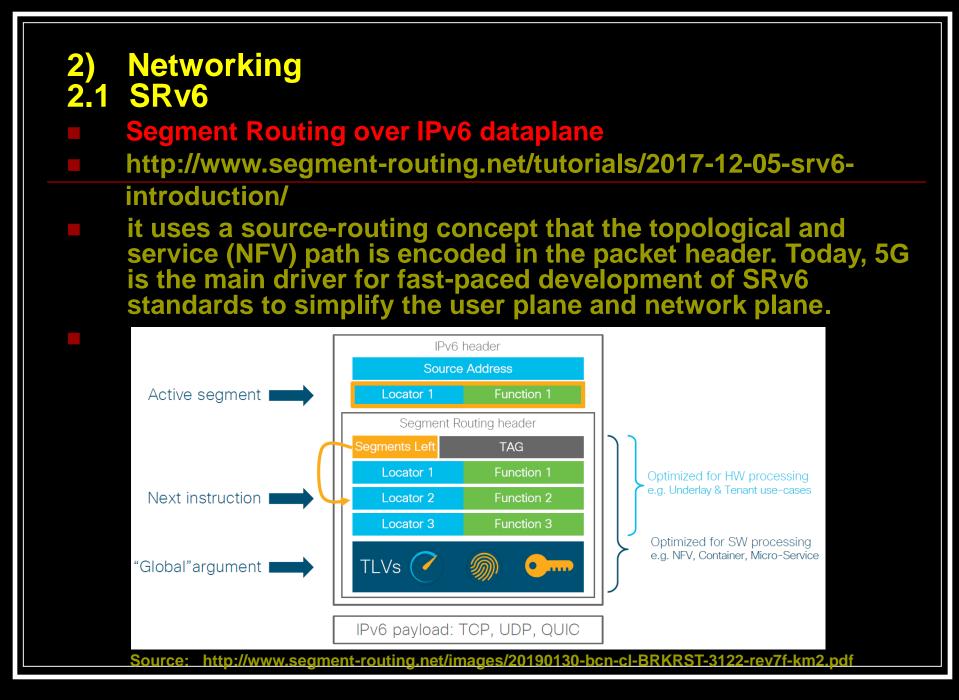
- https://rocm.github.io/
- most are open sourced
- not support ARM yet 8

1.3 OpenCL

- https://www.khronos.org/opencl/
- Implementation is depend on vendor
- https://www.khronos.org/assets/uploads/developers/library/2019iwocl/IWOCL%20Keynote%20May19.pdf

1.4 CAPI https://developer.ibm.com/linuxonpower/capi/ Coherent Accelerator Processor Interface (CAPI)

Features	Benefits
Customizable accelerator	Application developers can create an accelerator specifically tailored to their application using an FPGA platform. This specialization can improve performance.
Virtual addressing	An accelerator acts as a peer to the POWER8 cores, creating a truly shared memory space between the application and FPGA accelerator. The accelerator essentially becomes another thread of the application. Address translation is managed by the POWER8 processor.
Coherency	Application developers use a hardware managed 256KB cache in the FPGA for improved latency and synchronization with the main application threads. The FPGA cache is fully coherent with the caches in the POWER8 cores.
Simple API	Application developers can easily start and control the accelerator. The API features an intuitive programming interface similar to any multi-threaded application.
Flexible programming model	Application developers determine the best programming model for their application. The application can either dispatch work for the accelerator or the accelerator can act independently. This flexibility enables devices such as edge-of-network accelerators to process incoming work independently and to notify the main application when data is ready.
Extendable architecture	Application developers can choose an OpenPOWER Foundation partner device, such as Nallatech's CAPI Developer Kit. Extendable to other FPGA platforms, the architecture uses card features such as Ethernet and DRAM. In addition, the architecture supports prepackaged CAPI solutions such as the ppF <u>IBM Data Engine for NoSQL</u> .


1.5 Intel oneAPI

https://newsroom.intel.com/news/intels-one-api-projectdelivers-unified-programming-model-across-diversearchitectures/#gs.dx5h9x

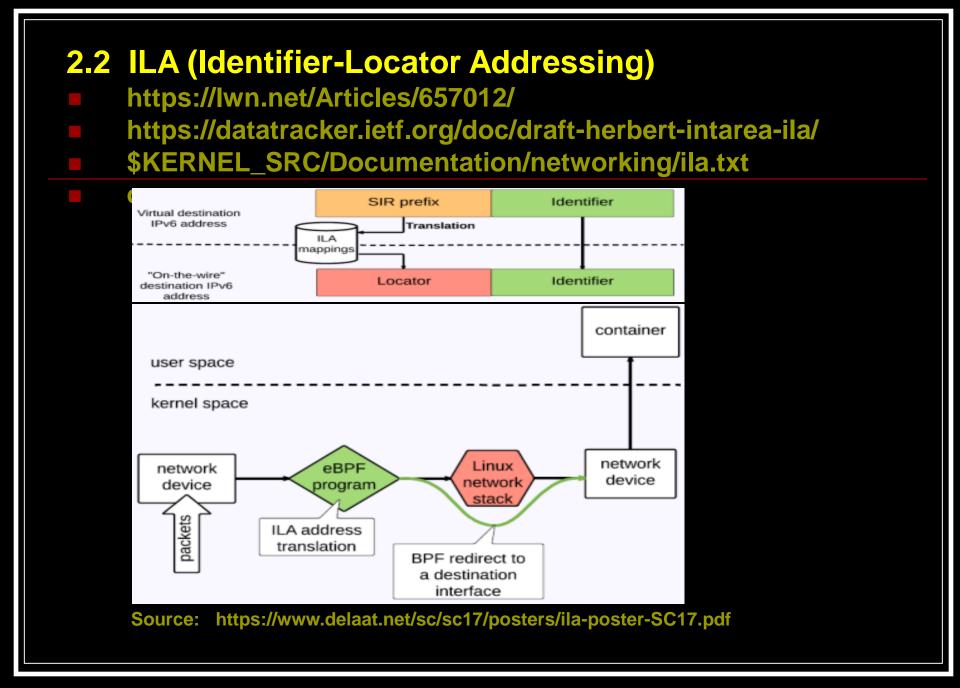
How It Works: One API supports direct programming and API programming, and will deliver a unified language and libraries that offer full native code performance across a range of hardware, including CPUs, GPUs, FPGAs and AI accelerators.

- Direct programming: One API contains a new direct programming language, Data Parallel C++ (DPC++), an open, cross-industry alternative to single architecture proprietary languages. DPC++ delivers parallel programming productivity and performance using a programming model familiar to developers. DPC++ is based on C++, incorporates SYCL* from The Khronos Group and includes language extensions developed in an open community process.
- **API-based programming:** One API's powerful libraries span several workload domains that benefit from acceleration. Library functions are custom-coded for each target architecture.
- Analysis and debug tools: Building on leading analysis tools, Intel will deliver enhanced versions of analysis and debug tools to support DPC++ and the range of SVMS architectures.

What Developers Should Expect: Intel will release a developer beta and additional details on the One API project in 2019's fourth quarter.

Linux Implementation

http://www.segment-routing.net/open-software/linux/


Linux kernel 4.10

The IPv6 dataplane functionalities enabling Segment Routing packet generation and forwarding are available in the latest Linux kernel releases (4.10 and later). This implementation is provided by the IP Networking Lab of Université Catholique de Louvain, Louvain-Ia-Neuve, Belgium.

Linux kernel 4.14

Kernel 4.14 is another milestone in SRv6 support in Linux. A new set of SRv6 behaviors has been added to the kernel (see table below).

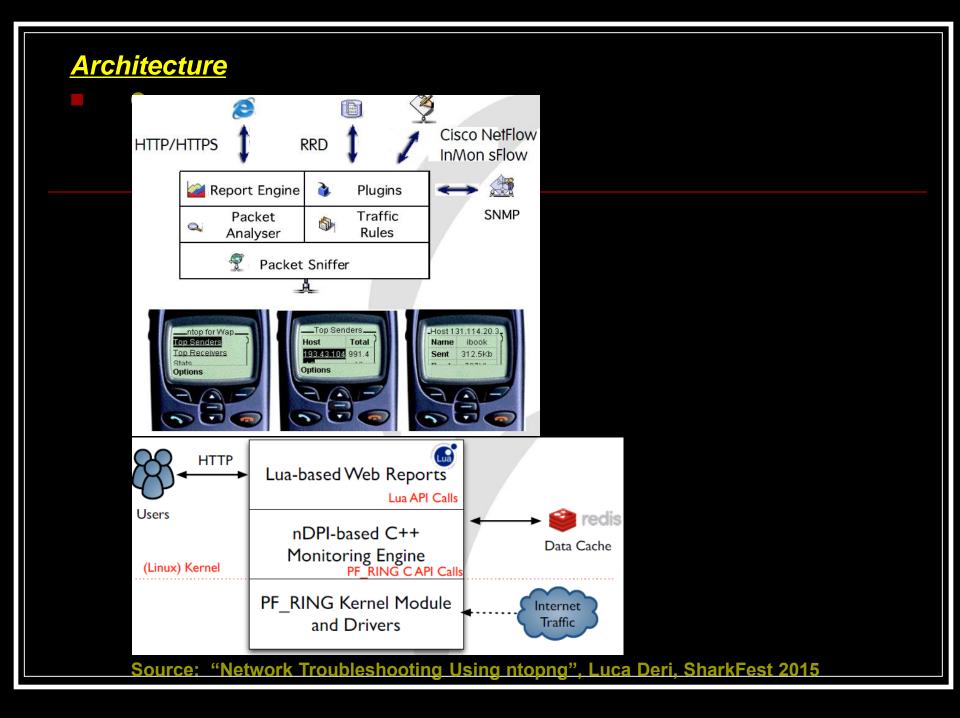
Name	Description	Release
End	Endpoint function	4.10 (February 2017), srext
End.X	Endpoint function with Layer-3 cross-connect	4.10 (February 2017), srext
End.T	Endpoint function with specific IPv6 table lookup	4.14 (November 2017)
End.DX2	Endpoint with decapsulation and Layer-2 cross-connect	4.14 (November 2017), srext
End.DX6	Endpoint with decapsulation and IPv6 cross-connect	4.14 (November 2017), srext
End.DX4	Endpoint with decapsulation and IPv4 cross-connect	4.14 (November 2017), srext
End.DT6	Endpoint with decapsulation and IPv6 table lookup	4.14 (November 2017)
End.DT4	Endpoint with decapsulation and IPv4 table lookup	In development
End.B6	Endpoint bound to an SRv6 policy	4.14 (November 2017)
End.B6.Encaps	Endpoint bound to an SRv6 encapsulation Policy	4.14 (November 2017)
End.BM	Endpoint bound to an SR-MPLS Policy	In development
End.S	Endpoint in search of a target in table T	In development
End.AD	Endpoint to SR-unaware APP via dynamic proxy	srext
End.AM	Endpoint to SR-unaware APP via masquerading	srext

ILNP (Identifier-Locator Network Protocol) https://ilnp.cs.st-andrews.ac.uk/

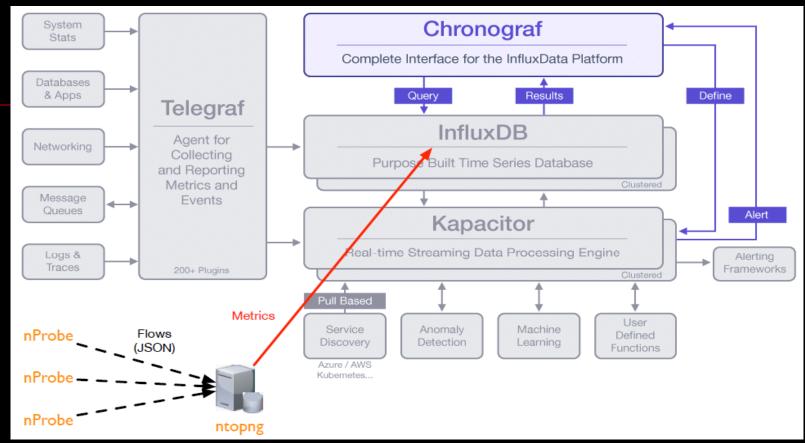
This project is enhancing the Internet Architecture by enriching the set of namespaces. The basic approach to this is to deprecate the concept of an Address and replace it with separate Locator and Identifier values. Although the architectural concept is independent of any particular network protocol, our research demonstration will be based on IPv6. Prototypes for FreeBSD and Linux are planned.

https://ilnp.github.io/ilnp-public-1/ Internet RFC documents

RFC6740 Identifier-Locator Network Protocol (ILNP) Architectural Description (Nov 2012) RFC6741 Identifier-Locator Network Protocol (ILNP) Engineering Considerations (Nov 2012) RFC6742 DNS Resource Records for the Identifier-Locator Network Protocol (ILNP) (Nov 2012) RFC6743 ICMP Locator Update Message for the Identifier-Locator Network Protocol for IPv6 (ILNPv6) (Nov 2012) RFC6744 IPv6 Nonce Destination Option for the Identifier-Locator Network Protocol for IPv6 (ILNPv6) (Nov 2012) RFC6745 ICMP Locator Update Message for the Identifier-Locator Network Protocol for IPv6 (ILNPv6) (Nov 2012) RFC6745 ICMP Locator Update Message for the Identifier-Locator Network Protocol for IPv4 (ILNPv4) (Nov 2012) RFC6746 IPv4 Options for the Identifier-Locator Network Protocol for IPv4 (ILNPv4) (Nov 2012) RFC6747 Address Resolution Protocol (ARP) for the Identifier-Locator Network Protocol for IPv4 (ILNPv4) (Nov 2012) RFC6748 Optional Advanced Deployment Scenarios for the Identifier-Locator Network Protocol (ILNP) (Nov 2012)


ntopng 3) https://www.ntop.org/ the next generation version of the original ntop, a high-speed web-based network traffic analysis and monitoring toolkit **Features** ntopne 976.56 Km High-speed web-based traffic analysis. 157.55.56.165 L7 Protoco 157.55.56 165 Traffic Volum ajax.aspnetcdn.com Traffic Recording **Traffic Analysis** Packet Capture Network Probe nProbe: extensible NetFlow v5/v9/IPFIX High-speed web-based traffic analysis Wire-speed packet 10 Gbit and above lossless network capture/transmission using commodity traffic recording with n2disk. Industry probe with plugins support for L7 and flow collection using ntopng. hardware with PF_RING. Zero-Copy standard PCAP file format. On-the-flv content inspection. nProbe Cento: up Persistent traffic statistics in RRD to 100 Gbit NetFlow, traffic packet distribution across threads, indexing to quickly retrieve interesting format. Layer 7 analysis by leveraging applications, Virtual Machines. Libpcap packets using fast-BPF and time classification, and packet shunting for on nDPI, an Open Source DPI support for seamless integration with interval. Precise traffic replay with IDS/packet-to-disk acceleration. framework.

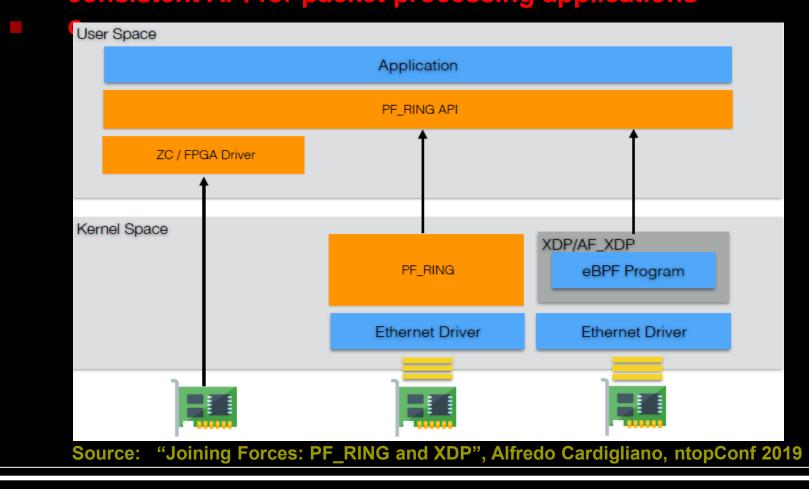
https://www.ntop.org/support/documentation/documentation/


disk2n

legacy applications

.

Data Collection Architecture



Source: https://www.ntop.org/wp-content/uploads/2019/05/InfluxData_Webinar_2019.pdf

<u>PF RING</u>

https://www.ntop.org/products/packet-capture/pf_ring

a Linux kernel module and user-space framework that allows you to process packets at high-rates while providing a consistent API for packet processing applications

3.1 eBPF support

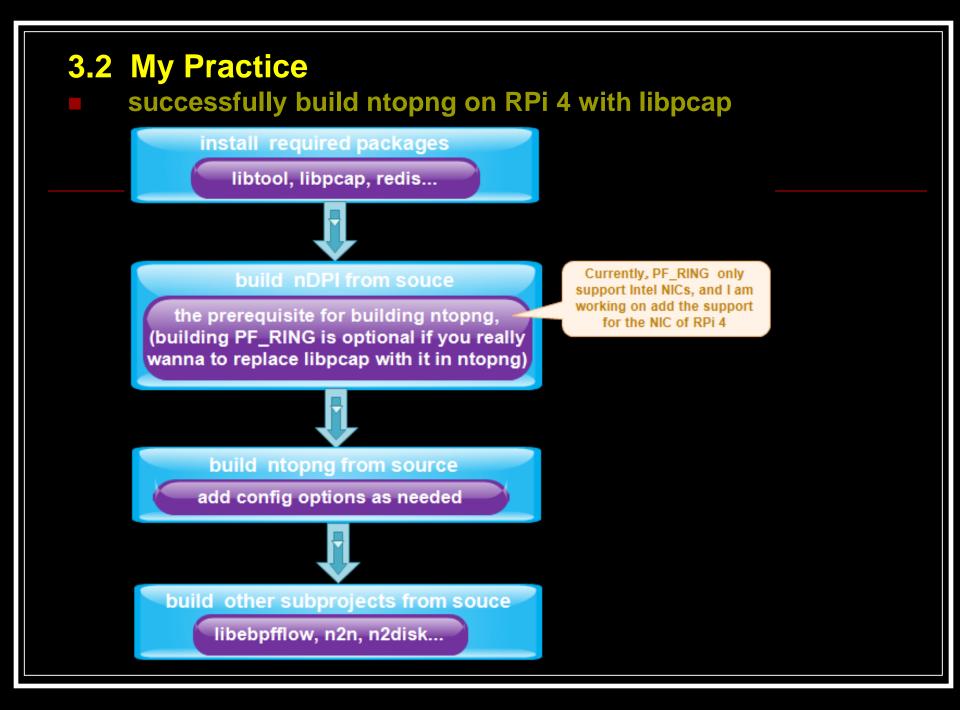
<u>libebpfflow</u>

https://github.com/ntop/libebpfflow

• Our aim has been to create an open-source library that offers a simple way to interact with eBPF network events in a transparent way.

- Reliable and trustworthy information on the status of the system when events take place.
- Low overhead event-based monitoring
- Information on users, network statistics, containers and processes

• Go and C/C++ support

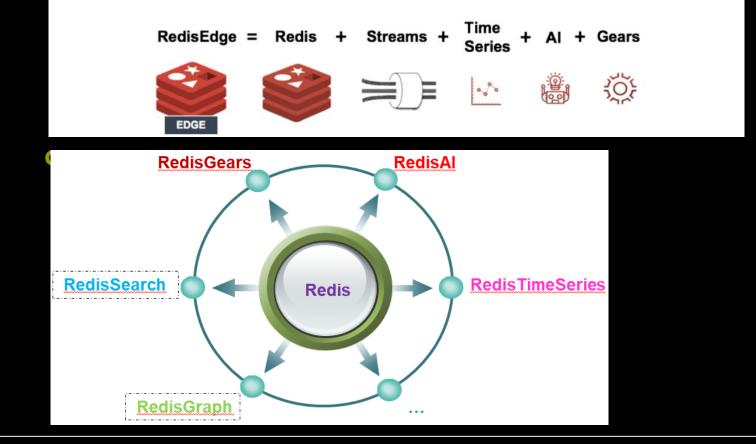

Source: https://www.ntop.org/wp-content/uploads/2019/05/InfluxData_Webinar_2019.pdf

<u>nBPF</u>

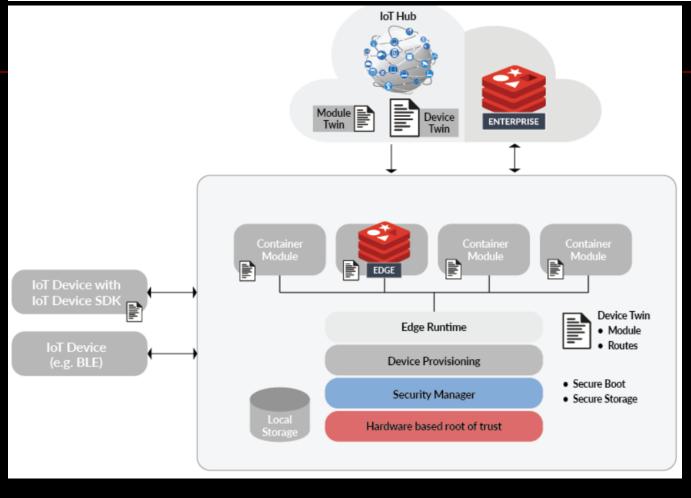
https://www.ntop.org/guides/pf_ring/nbpf/nbpf.html a filtering engine/SDK supporting the BPF syntax and can be used as alternative to the implementation that can be found in libpcap and inside the kernel

<u>ntopng 4.x</u>

ntopng 4.x will integrate system visibility with eBPF


4) DRedis 4.1 Redis https://redis.io/

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. It supports data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic partitioning with Redis Cluster.


Module https://redis.io/topics/modules-intro https://redis.io/topics/modules-api-ref

<u>RedisEdge</u> https://redislabs.com/solutions/redisedge/ The Edge Computing Database for the IoT Edge

RedisEdge from Redis Labs is a purpose-built, multi-model database for the demanding conditions at the Internet of Things (IoT) edge. It can ingest millions of writes per second with <1ms latency and a very small footprint (<5MB), so it easily resides in constrained compute environments. It can run on a variety of edge devices and sensors ranging from ARM32 to x64-based hardware. RedisEdge bundles open source Redis (version 5 with Redis Streams) with the RedisAI and RedisTimeSeries modules, along with RedisGears for inter-module communication.

RedisEdge is also available as a module for Azure IoT Edge, making it easy for IoT application developers using Azure IoT services to leverage the power of Redis. Azure IoT Edge with RedisEdge helps businesses focus on insights instead of data management. Developers can configure and deploy their solutions via standard containers and monitor them from the cloud.

4.2 KeyDB

- https://keydb.dev/
 - A Multithreaded Fork of Redis
 - an ultra-fast, open source Key Value Store Database fully compatible with Redis API, modules, and protocols

	KeyDB	Redis
Key-Value Store Database	\bigotimes	\bigotimes
In Memory Database	\bigotimes	\bigotimes
Multithreaded IO	\bigotimes	×
Advanced Multithreading	\bigotimes	×
Flash Support	\bigotimes	\$\$\$
Multi-Master Support	\bigotimes	\$\$\$
Active-Active Support	\bigotimes	\$\$\$
RAM/SSD Persistence	\bigotimes	\bigotimes
Database Not Limited by Size	\bigotimes	×
Simple to Use at Scale	\bigotimes	×
High Availability	\bigotimes	\bigotimes
Cloud Optimized	\bigotimes	\bigotimes
ARM Support for IOT	\bigotimes	\bigotimes

4.3 Tarantoolhttps://tarantool.io/en/

Key features of the application server:

- 100% compatible drop-in replacement for Lua 5.1, based on LuaJIT 2.1. Simply use #!/usr/bin/tarantool instead of #!/usr/bin/lua in your script.
- full support for Lua modules and a rich set of own modules, including cooperative multitasking, non-blocking I/O, access to external databases, etc

Key features of the database:

- ANSI SQL, including views, joins, referential and check constraints
- MsgPack data format and MsgPack based client-server protocol
- two data engines: 100% in-memory with optional persistence and an own implementation of LSM-tree, to use with large data sets
- multiple index types: HASH, TREE, RTREE, BITSET
- asynchronous master-master replication

It is very simple and lightning fast.

- authentication and access control
- the database is just a C extension to the application server and can be turned off

Supported platforms are Linux/x86 and FreeBSD/x86, Mac OS X.

Tarantool is ideal for data-enriched components of scalable Web architecture: queue servers, caches, stateful Web applications.

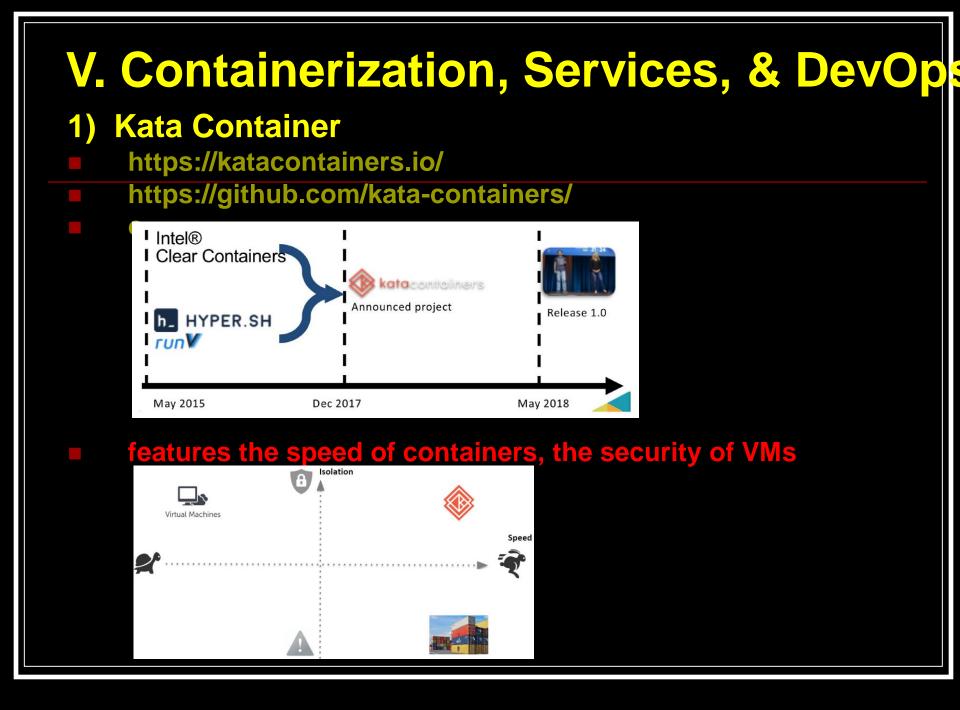
COMMUNITY EDITION

Tarantool Community Edition is a powerful fast data platform that comes with an in-memory database and an integrated application server

incorporates the LuaJIT "Just In Time" compiler

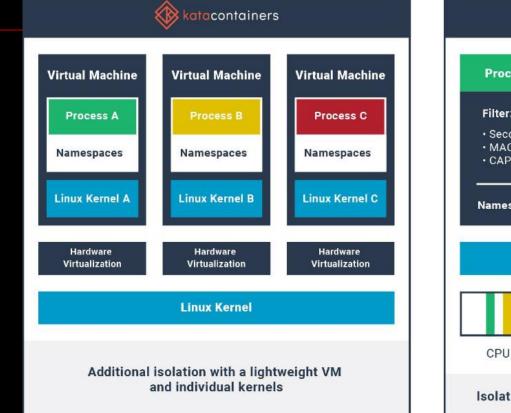
4.4 DRedis Design Goals & Principles

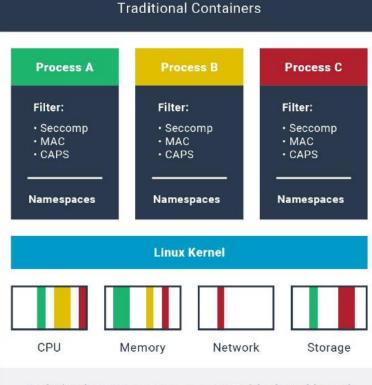
- a re-implementation of Redis by combining the advantage of both KeyDB and Tarantool
 - compatible with Redis 6 and RESP3
- all the existing Redis modules should work well
- Better solution for Redis persistence
- make fully use of LuaJIT
 - ...


5) Rethink Lightweight Storage Solutions <u>Ceph</u>

- https://ceph.io/
- a unified, distributed storage system designed for excellent performance, reliability and scalability
- used as the default storage solution in OpenStack, and is popular in production environment
- but it is not a lightweight solution

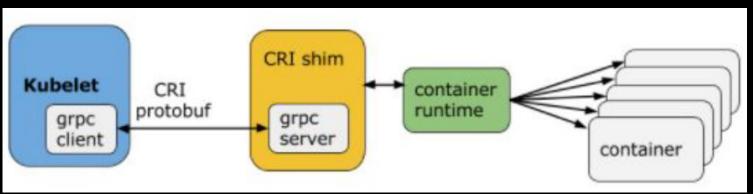
Other Interesting Projects


Kudu


- https://kudu.apache.org/
- but with many limitations...

<u>Architecture</u>

https://github.com/kata-containers/documentation/blob/master/ design/architecture.md


Isolation by namespaces, cgroups with shared kernel

Source: https://www.openstack.org/summit/denver-2019/summit-schedule/events/23342/ tracing-the-life-of-a-packet-with-kata-containers

<u>Runtime</u>

The runtime is OCI-compatible, CRI-O-compatible, and Containerd-compatible, allowing it to work seamlessly with both both Docker and Kubernetes respectively

Kubernetes CRI

https://github.com/kata-containers/documentation/blob/master/ how-to/how-to-use-k8s-with-cri-containerd-and-kata.md

1.2 My Practice

Pls also refer to my presentation "OpenStack on ARM" at OpenInfra Days 2018(Beijing)

Try to build Kata Containers on my RPi4

kata-runtime - version 1.9.0-rc0 (commit da981919400612bc09f9cee40<u>3c2b9fd269a4798-dirty</u>)

architecture:

Host: golang: arm64 Build: arm64

golang:

go version go1.13.3 linux/arm64

• hypervisors:

Known: acrn firecracker nemu qemu qemu-virtiofs Available for this architecture: qemu

```
Summary:
```

```
destination install path (DESTDIR) : /
binary installation path (BINDIR) : /usr/local/bin
binaries to install :
```

- /usr/local/bin/kata-runtime

- /usr/local/bin/containerd-shim-kata-v2
- /usr/libexec/kata-containers/kata-netmon
- /usr/local/bin/data/kata-collect-data.sh
- configs to install (CONFIGS) :

cli/config/configuration-qemu.toml

install paths (CONFIG_PATHS) :

```
- /usr/share/defaults/kata-containers/configuration-qemu.toml
alternate config paths (SYSCONFIG PATHS) :
```

```
- /etc/kata-containers/configuration-gemu.toml
```

```
default install path for qemu (CONFIG_PATH) : /usr/share/defaults/kata-containers/configuration.toml
default alternate config path (SYSCONFIG) : /etc/kata-containers/configuration.toml
qemu hypervisor path (QEMUPATH) : /usr/bin/qemu-system-aarch64
assets path (PKGDATADIR) : /usr/share/kata-containers
proxy+shim path (PKGLIBEXECDIR) : /usr/libexec/kata-containers
```

INSTALL install-scripts INSTALL install-completions INSTALL install-configs INSTALL install-configs INSTALL install-bin INSTALL install-containerd-shim-v2 INSTALL install-bin-libexec

But

[myrpi4@myrpi4h1 KataContainer]\$ sudo kata-runtime kata-check [sudo] password for myrpi4: ERRO[0000] /usr/share/defaults/kata-containers/configuration-qemu.toml: file /usr/share/kata-containers/vmlinuz.container does not exist a rch=arm64 name=kata-runtime pid=39801 source=runtime

/usr/share/defaults/kata-containers/configuration-qemu.toml: file /usr/share/kata-containers/vmlinuz.container does not exist

https://github.com/kata-containers/documentation/blob/ master/install/README.md

Supported Distributions

Kata is packaged by the Kata community for:

Distribution (link to installation guide)	Versions
CentOS	7
Debian	9
Fedora	28, 29, 30
openSUSE	Leap (15, 15.1) Tumbleweed
Red Hat Enterprise Linux (RHEL)	7
SUSE Linux Enterprise Server (SLES)	SLES 12 SP3
Ubuntu	16.04, 1 8.04

- may due to the 5.3.x kernel that we built for Manjaro on RPi4, working on find the root cause of this issue...
- https://snapcraft.io/install/kata-containers/manjaro

2) Lightweight Kubernetes 2.1 K3S Overview https://k3s.io/

Lightweight Kubernetes

Easy to install. A binary of less than 40 MB. Only 512 MB of RAM required to run. This shouldn't take long...

curl -sfL https://get.k3s.io | sh # Check for Ready node, takes maybe 30 seconds
k3s kubectl get node

Optimized for ARM

Simplified Operations

Both ARM64 and ARMv7 are supported with binaries and multiarch images available for both. k3s works great from something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server. k3s is wrapped in a simple package that reduces the dependencies and steps needed to run a production Kubernetes cluster. Packaged as a single binary, k3s makes installation and upgrade as simple as copying a file. TLS certificates are automatically generated to ensure that all communication is secure by default.

Perfect for Edge

K3s is a <u>Certified Kubernetes</u> distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances.

Internals

k3s is a fully compliant production-grade Kubernetes distribution with the following changes:

- · Legacy, alpha, non-default features are removed. Many of these features are not available in most Kubernetes clusters already.
- Removed in-tree plugins (cloud providers and storage plugins) which can be replaced with out-of-tree add-ons.

Removes

- certified
- Added sqlite3 as the default storage mechanism. etcd3 is still kubernete available, but not the default.
- · Wrapped in a simple launcher that handles a lot of the complexity of TLS and options.

Adds

Legacy and non-default features Alpha features In-tree cloud providers In-tree storage drivers Docker (optional)

Simplified installation SQLite3 support in addition to etcd TLS management

Automatic Manifest and Helm Chart management

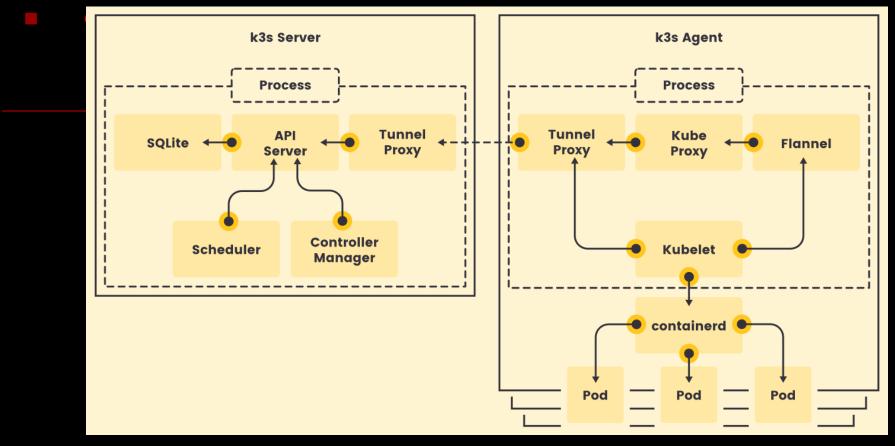
containerd, CoreDNS, Flannel

Minimal to no OS dependencies (just a sane kernel and cgroup mounts needed). k3s packages required dependencies

- containerd
- Flannel
- CoreDNS
- CNI
- Host utilities (iptables, socat, etc)

512 MB of ram per server

75 MB of ram per node

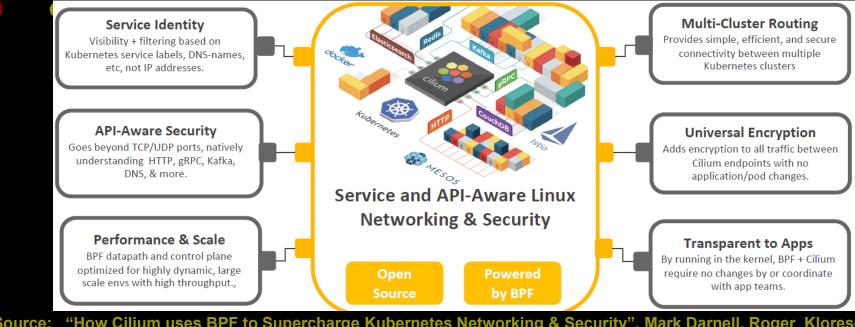

x86_64, ARMv7, ARM64

Linux 3.10+

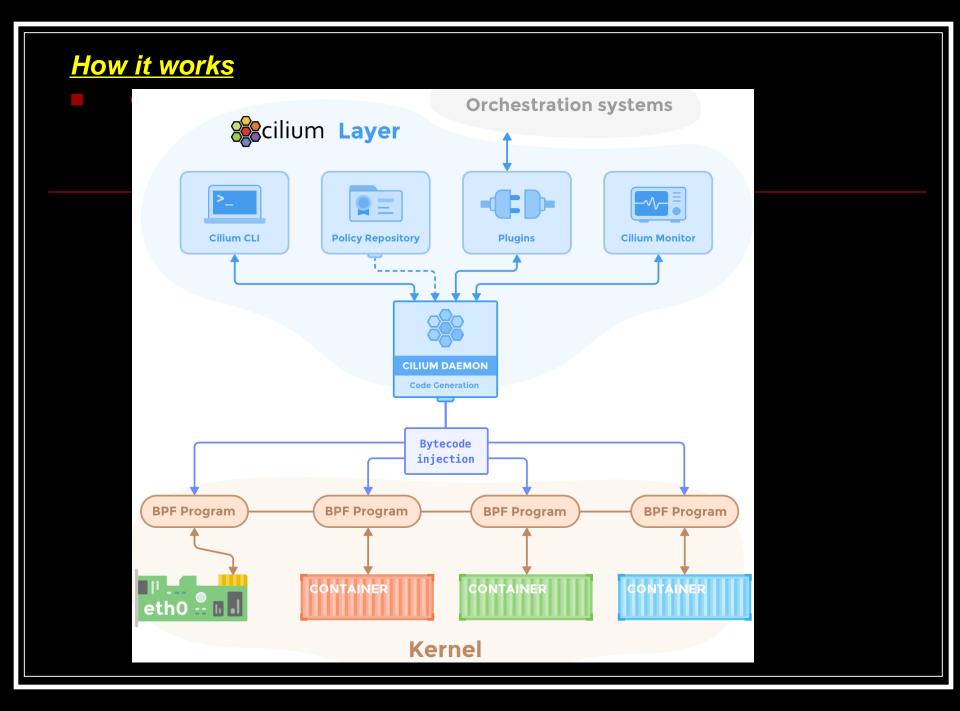
Minimum System Requirements

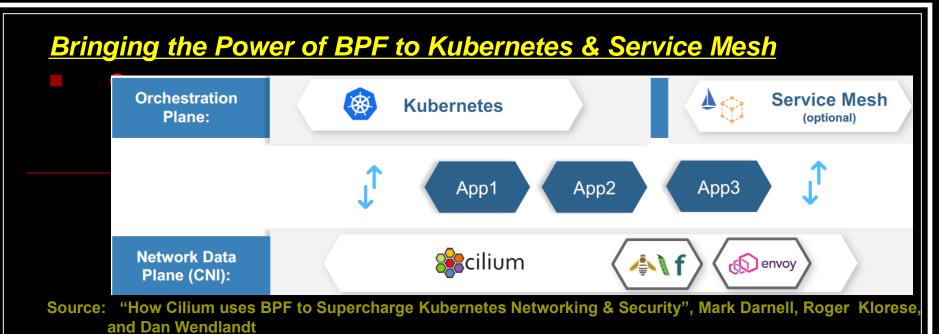
200 MB of disk space

<u>How it works</u>

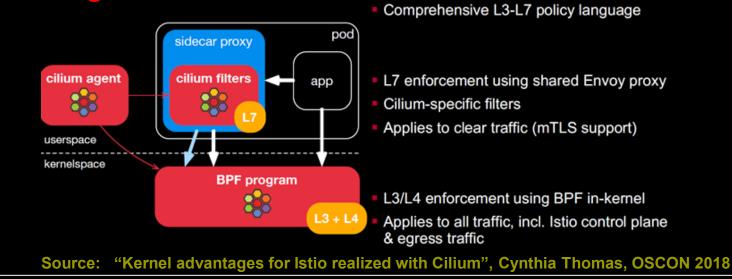

for practicing K3S on ARM64, pls also refer to my presentation "In-Kernel Virtual Machine & Service" at OSDT Beijing (Nov 9, 2019)

3) Cilium Overview


- https://cilium.io/
 - https://github.com/cilium/


API Aware Networking and Security using BPF and XDP

Cilium is open source software for providing and transparently securing network connectivity and loadbalancing between application workloads such as application containers or processes. Cilium operates at Layer 3/4 to provide traditional networking and security services as well as Layer 7 to protect and secure use of modern application protocols such as HTTP, gRPC and Kafka. Cilium is integrated into common orchestration frameworks such as Kubernetes and Mesos.



Source: "How Cilium uses BPF to Supercharge Kubernetes Networking & Security", Mark Darnell, Roger Klorese and Dan Wendlandt

Integration architecture

an ambitious project

"€.\} f

BPF

Turning Linux into a Microservices-aware Operating System

Filmed at QCON San Francisco 2018

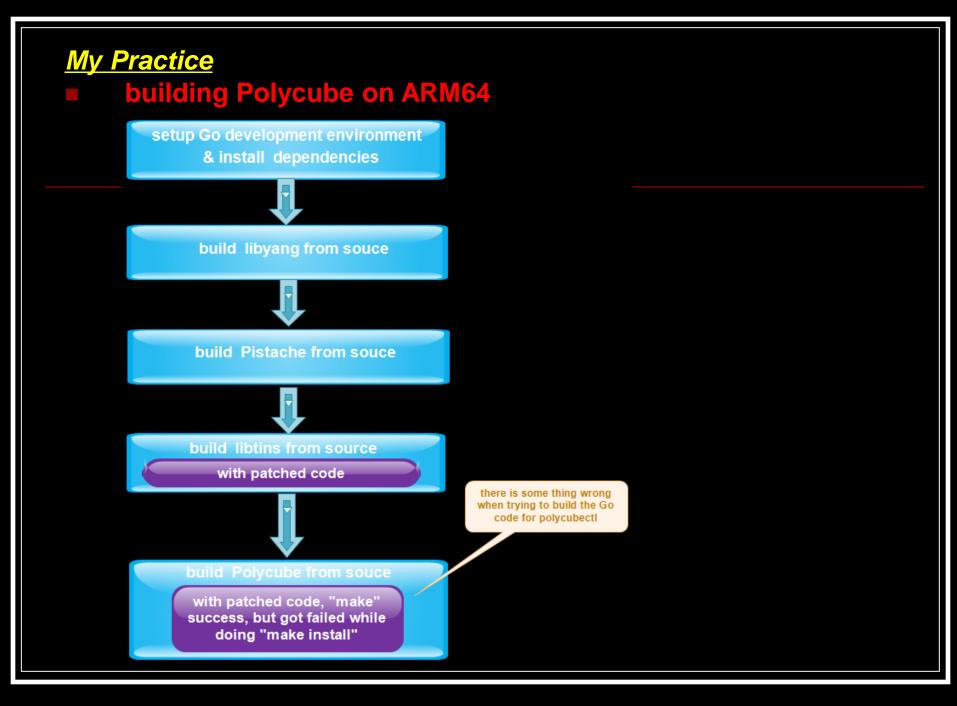
cilium

brought to you by

4) In-Kernel Services4.1 Polycube<u>Overview</u>

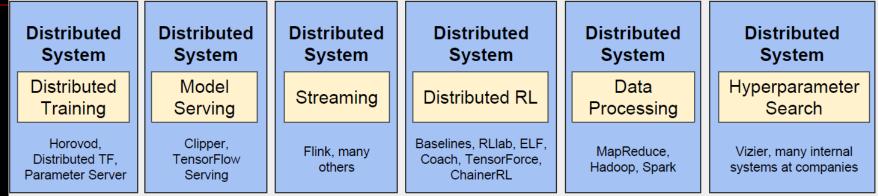
https://github.com/polycube-network/

Polycube is an **open source** software framework for Linux that enables the creation of **virtual networks** and provides **fast** and **lightweight network functions**, such as *bridge*, *router*, *nat*, *load balancer*, *firewall*, *DDoS mitigator*, and more.


Within each virtual network, individual network functions can be composed to build arbitrary **service chains** and provide custom network connectivity to **namespaces**, **containers**, **virtual machines**, and **physical hosts**.

Virtual functions, called *cubes*, are extremely **efficient** because are based on the recent *BPF* and *XDP* Linux kernel technologies. In addition, cubes are easily **extensible** and **customizable**.

Polycube can control its entire virtual topology and all the network services with a simple and coherent command line, available through the *polycubectl* tool. A set of equivalent commands can be issued diretly to *polycubed*, the Polycube REST-based daemon, for better machine-to-machine interaction.


Polycube also provides two working **standalone applications** built up using this framework. *pcn-K8s* is a Polycubebased CNI plug-in for *Kubernetes*, which can handle the network of an entire data center. It also delivers better throughput as compared with some of the existing CNI plug-ins. *pcn-iptables* is a more efficient and scalable clone of the existing Linux *iptables*.

<u>Archited</u>	CLI polycubect1 CLI polycubect1
	Router Load Balancer NAT Cubes Firewall Bridge DDoS Mitigator
	polycubed
	BPF Linux XDP

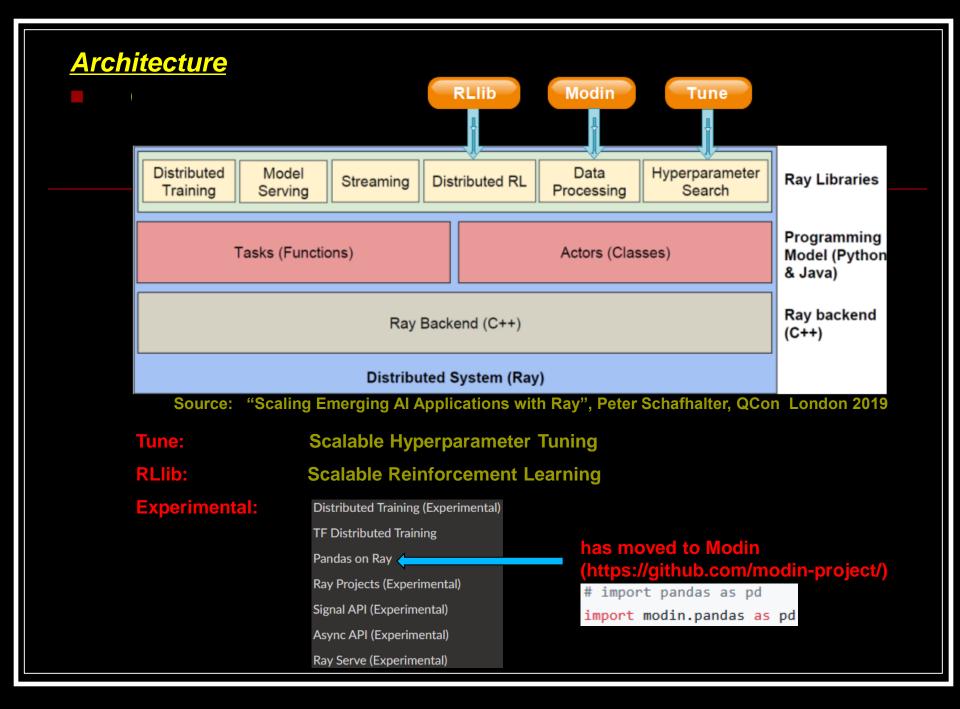
VI. Distributed Framework

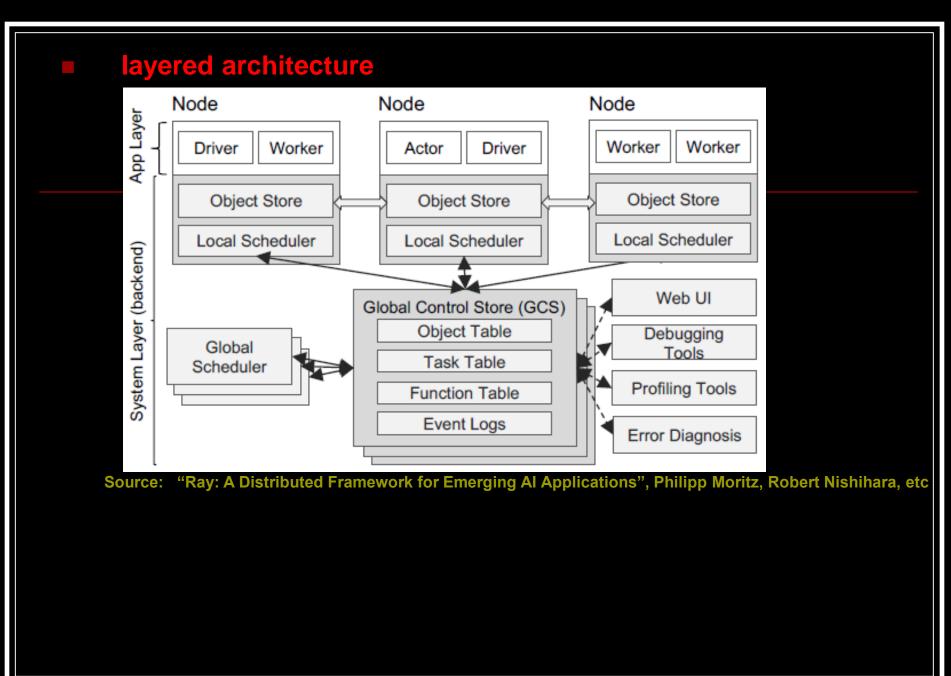
1) Ray <u>The Machine Learning Ecosystem</u>

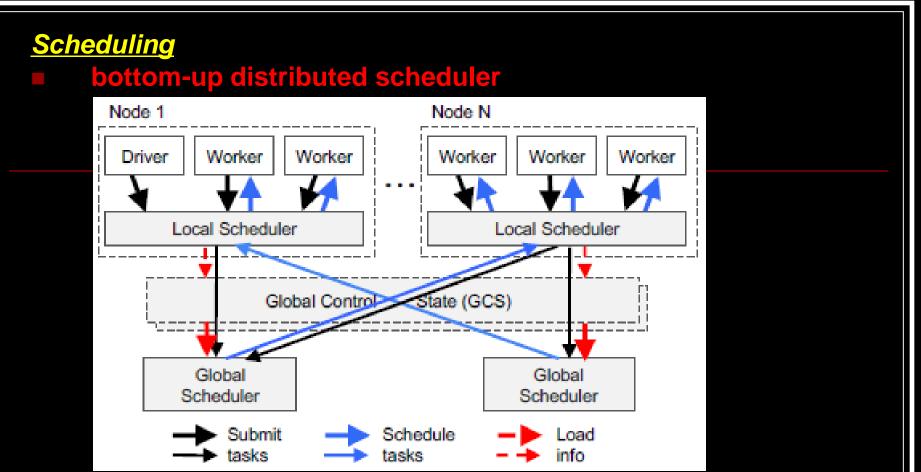
Source: "Scaling Emerging Al Applications with Ray", Peter Schafhalter, QCon London 2019

<u>What is it</u>

https://rise.cs.berkeley.edu/projects/ray/


import ray
ray.init()
@ray.remote
def f(x):
 return x * x


Execute Python functions in parallel.


https://github.com/ray-project/

futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))

- a system for distributed Python that unifies the ML ecosystem
- a fast and simple framework for building and running distributed applications

Source: "Ray: A Distributed Framework for Emerging Al Applications", Philipp Moritz, Robert Nishihara, etc

<u>Notes</u>

Serialization

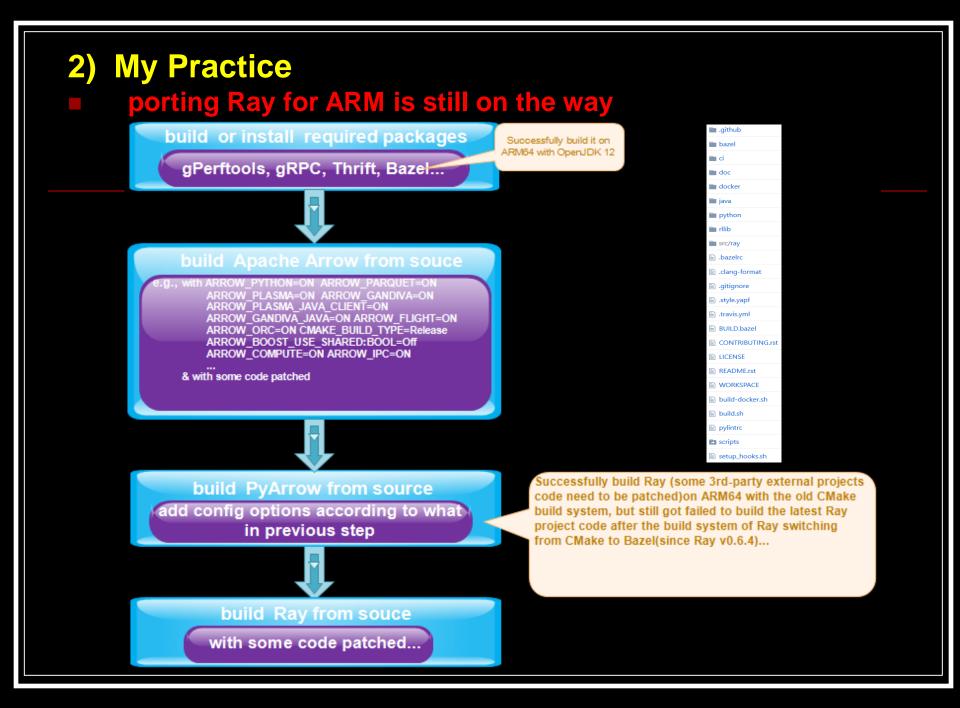
Plasma is a high-performance shared memory object store originally developed in Ray and now being developed in Apache Arrow.

Data Format

Ray optimizes for NumPy arrays by using the Apache Arrow.

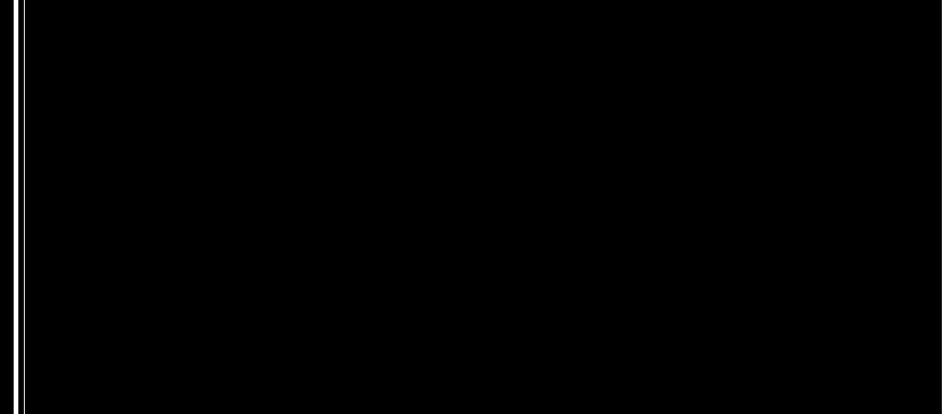
Redis

GCS uses one Redis key-value store per shard, with entirely single-key operations.


AutoScaler

GCS uses one Redis key-value store per shard, with entirely single-key operations.

[myrpi4@myrpi4h1 ray-master]\$ tree -C -L 1 python/ray/autoscaler autoscaler.py aws commands.py docker.py gcp ____init__.py kubernetes local log_timer.py ____odg.provider.py tags.py _____uddtr.py


Deploying on Kubernetes

The easiest way to run a Ray cluster is by using the built-in Autoscaler, which has support for running on top of Kubernetes. Warning: running Ray on Kubernetes is still a work in progress.

2.1 Redesign & Reimplementation of Ray

- extending Ray as a general-purse distributed App framework
- extending Ray as a generic scheduler for HPC tasks
 - ...

VII. Messaging & RPC

1) gRPC & Protobuf

- https://github.com/grpc
- https://github.com/protocolbuffers/protobuf
- they are the most popular Messaging & RPC projects

<u>Future</u>

Reconsider nanomsg & msgpack when implementing DRay, DRPC, and ntopng2:

- https://github.com/nanomsg/
- https://github.com/msgpack

2) Rethink In-Kernel Messaging

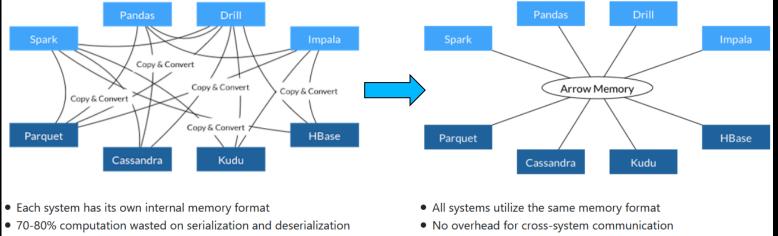
IKBUS (In-Kernel Bus)

for messaging among In-Kernel services & Kernel subsystems

Also refer to

- https://www.freedesktop.org/wiki/Software/systemd/kdbus/ Linux kernel D-Bus implementation, but not limit to it...
- https://github.com/bus1
 - **Capability-based IPC for Linux**

VIII. Data Processing


1) Apache Arrow

https://arrow.apache.org/

https://github.com/apache/arrow

a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. It also provides computational libraries and zero-copy streaming messaging and interprocess communication...

Advantages of a Common Data Layer

• Similar functionality implemented in multiple projects

• Projects can share functionality (eq, Parquet-to-Arrow reader)

<u>Components</u>

Major components of the project include:

- The Arrow Columnar In-Memory Format
- C++ libraries
- C bindings using GLib
- C# .NET libraries
- Gandiva: an LLVM-based Arrow expression compiler, part of the C++ codebase
- Go libraries
- Java libraries
- JavaScript libraries
- Plasma Object Store: a shared-memory blob store, part of the C++ codebase
- Python libraries
- R libraries
- Ruby libraries
- Rust libraries

https://arrow.apache.org/powered_by/

- Apache Parquet: A columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language. The C++ and Java implementation provide vectorized reads and write to/from Arrow data structures.
- Apache Spark: Apache Spark™ is a fast and general engine for large-scale data processing. Spark uses Apache Arrow to
 - 1. improve performance of conversion between Spark DataFrame and pandas DataFrame
 - 2. enable a set of vectorized user-defined functions (pandas_udf) in PySpark.
- Dask: Python library for parallel and distributed execution of dynamic task graphs. Dask supports using pyarrow for accessing Parquet files
- Data Preview: Data Preview is a Visual Studio Code extension for viewing text and binary data files. Data Preview uses Arrow JS API for loading, transforming and saving Arrow data files and schemas.
- Dremio: A self-service data platform. Dremio makes it easy for users to discover, curate, accelerate, and share data from any source. It includes a distributed SQL execution engine based on Apache Arrow. Dremio reads data from any source (RDBMS, HDFS, S3, NoSQL) into Arrow buffers, and provides fast SQL access via ODBC, JDBC, and REST for BI, Python, R, and more (all backed by Apache Arrow).
- Fletcher: Fletcher is a framework that can integrate FPGA accelerators with tools and frameworks that use the Apache Arrow in-memory format. From a set of Arrow Schemas, Fletcher generates highly optimized hardware structures that allow accelerator kernels to read and write RecordBatches at system bandwidth through easy-to-use interfaces.

2) Lightweight Solution

As Spark and Flink are not considered, and streaming data processing is important in IoT

Interesting Projects

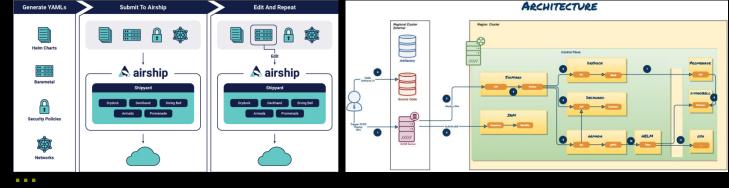
TDengine

- https://github.com/taosdata/TDengine
 - An open-source big data platform designed and optimized for the IoT

Stuart

- https://github.com/nubix-io/stuart
- a pure Lua rewrite of Apache Spark 2.2, designed for embedding and edge computing

Desigr


Stuart is designed for real-time and embedding, and so it follows some rules:

- It does not perform deferred evaluation of anything; all compute costs are paid upfront for predictable throughput.
- It uses pure Lua and does not include native C code. This maximizes portability and opportunity to be cross-compiled. Any potential C code optimizations are externally sourced through the module loader. For example, Stuart links to lunajson, but it also detects and uses cjson when that native module is present.
- It does not execute programs (like 1s or dir to list files), because there may not even be an OS.
- It does not make use of coroutines, in order to ensure easy transpiling to C.
- It does not use upvalues or metatables in module scripts, so that module tables can be burned into ROM and chipsets (see eLua LTR)
- It should be able to eventually do everything that Apache Spark does.

IX. Artificial Intelligence

1) Trends

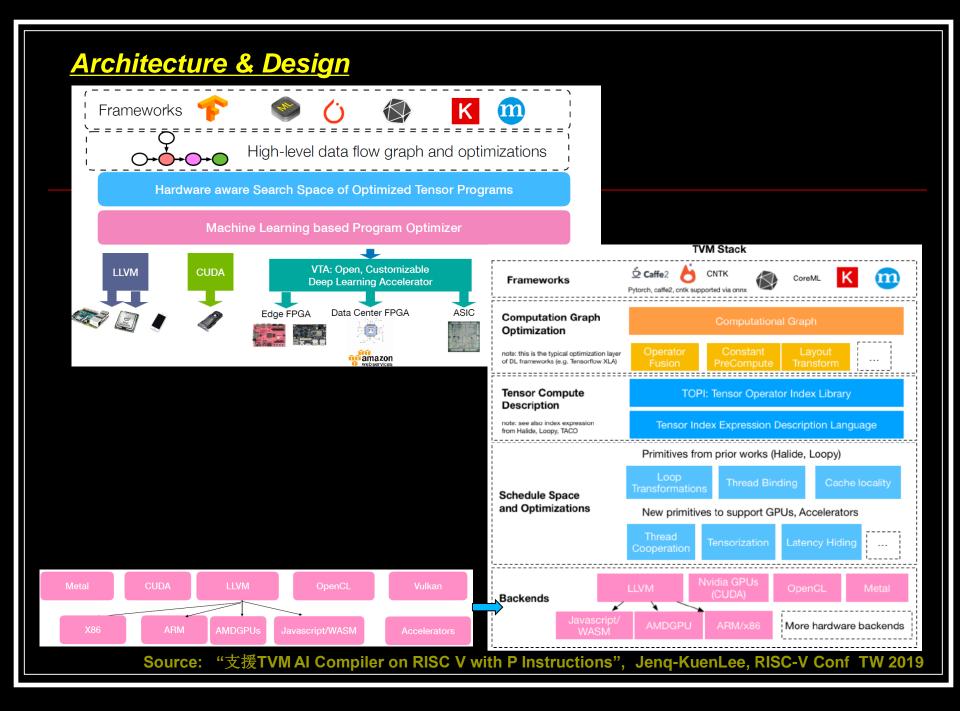
- Project Management, Pipeline, and Visualization
 - https://mlflow.org/ https://pipeline.ai
- AloT(Artificial Intelligence of Things) https://www.forbes.com/sites/janakirammsv/2019/08/12/why-aiot-isemerging-as-the-future-of-industry-40/#3fa88278619b https://aiotworkshop.github.io/
 - AIOps(Artificial Intelligence for IT Operations) https://www.airshipit.org/

2) TVM

https://tvm.ai/

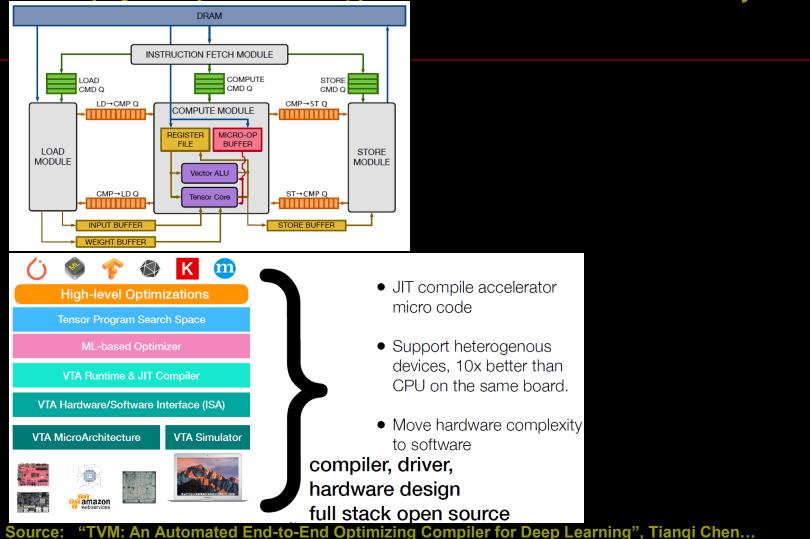
End to End Deep Learning Compiler Stack for CPUs, GPUs and specialized accelerators

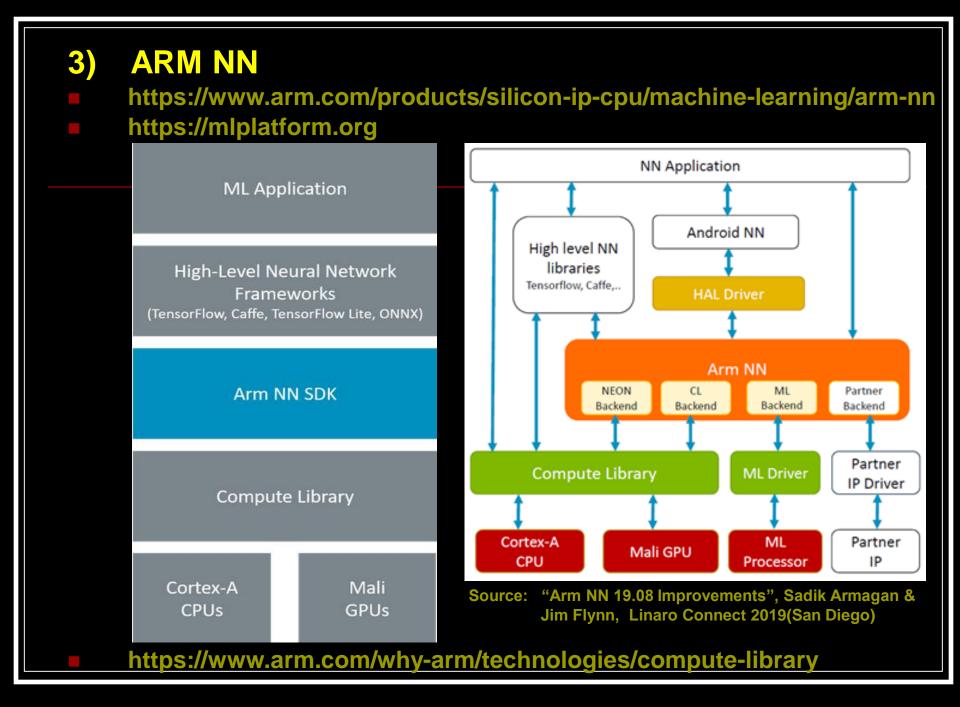
TVM is an open deep learning compiler stack for CPUs, GPUs, and specialized accelerators. It aims to close the gap between the productivity-focused deep learning frameworks, and the performance- or efficiency-oriented hardware backends. TVM provides the following main features:

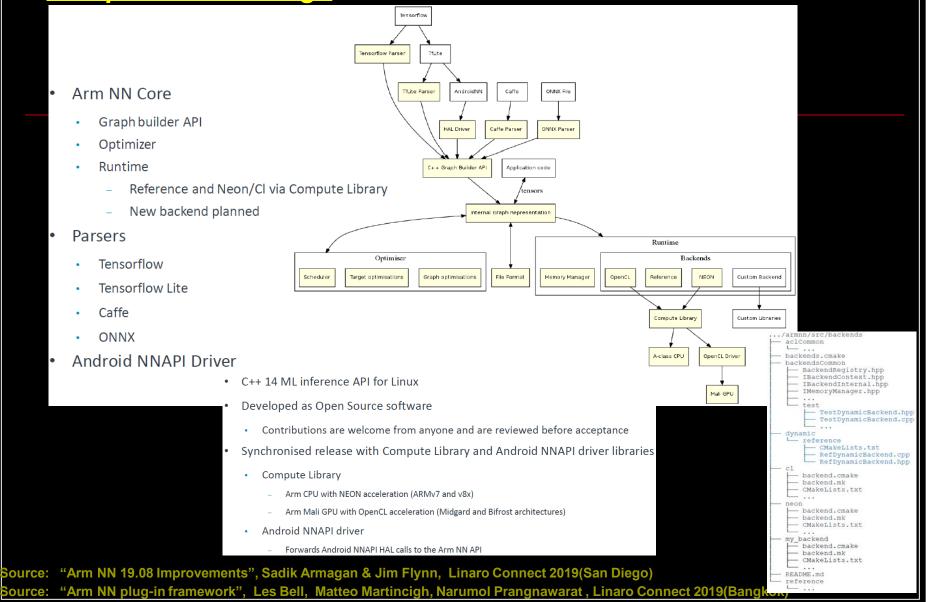

- Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet into minimum deployable modules on diverse hardware backends.
- Infrastructure to automatic generate and optimize tensor operators on more backend with better performance.

TVM stack began as a research project at the SAMPL group of Paul G. Allen School of Computer Science & Engineering, University of Washington. The project is now driven by an open source community involving multiple industry and academic institutions. The project adopts Apache-style merit based governace model.

TVM provides two level optimizations show in the following figure. Computational graph optimization to perform tasks such as high-level operator fusion, layout transformation, and memory management. Then a tensor operator optimization and code generation layer that optimizes tensor operators. More details can be found at the techreport.

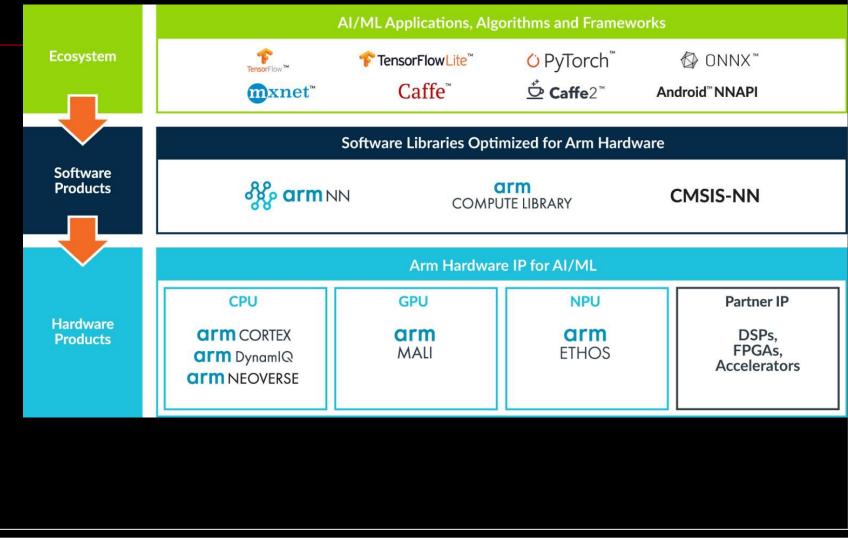



Source: "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning", Tianqi Chen...


VTA Hardware Architecture https://docs.tvm.ai/vta/index.html

Philosophy: simple hardware, provide software-defined flexibility

Components & Design

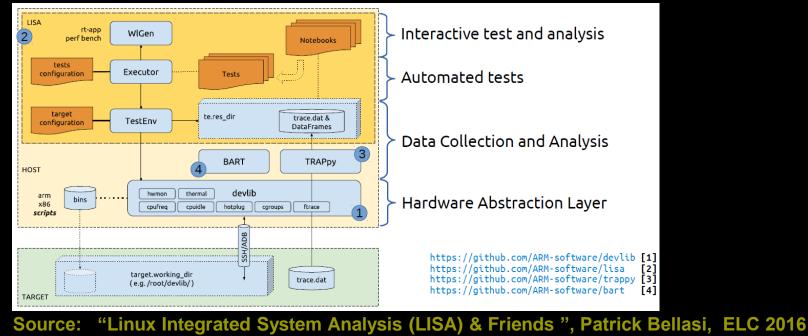


4)	My Practice successfully built TVM and PyTorch on RPi4 natively successfully built ComputeLibrary on RPi4 natively by changing one line in its Scons build file			
	Android NDK: HCross compilation	Ily built ARMNN on RPi4 na How to use Android NDK to build Arm NN ion from x86_64 Ubuntu to arm64 Linux: Arm NN tion under aarch64 Debian 9		android
	Next Steps 1. add support PyTorch support in ARM NN https://pytorch.org/blog/pytorch-1-dot-3-adds-mobile-privacy-			 aten benchmarks binaries c10
	Component torch torch.autograd torch.jit torch.nn torch.multiprocessing torch.utils	torch a Tensor library like NumPy, with strong GPU support • [Experimental]: Named Tensor Support torch.autograd a tape-based automatic differentiation library that supports all differentiable Tensor operations in torch • [Experimental]: Named Tensor Support torch.jit a compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code • [Experimental]: Quantization support torch.nn a neural networks library deeply integrated with autograd designed for maximum flexibility • New Features torch.multiprocessing Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training • Distributed	 [Experimental]: Mobile Support [Experimental]: Named Tensor Support [Experimental]: Quantization support Type Promotion Deprecations New Features TensorBoard: 3D Mesh and Hyperparameter Support Distributed 	 caffe2 cmake docker docs ios modules scripts submodules
	2. useful o	components such like QNNPACK, and Captum fro	 New TorchScript features Improvements 	 test third_party tools torch

3. practice TVM FPGA backend

ARM NN future roadmap

https://developer.arm.com/ip-products/processors/machine-learning/ arm-nn


X. Monitoring, Tuning, and Debugging

<u>Design Goal</u>

the Swiss Army Knife for our development work

1) Extending LISA <u>Project LISA</u>

- Linux Integrated System Analysis
- https://github.com/ARM-software/lisa

2) Extending ntopng

- rethinking ntopng as a good basic framework which is extended as a system monitoring toolkit. In particular, it is moving towards eBPF-based solutions.
- fully replace InfluxDB with our new DRedis database
- pls also refer to my presentation "In-Kernel Virtual Machine & Service" at OSDT Beijing (Nov 9, 2019)

3) My Practice

- working on a new eBPF-centric unified system(both kernel space & user space) monitoring, tuning, and debugging toolkit base on LISA but reconstruct it from the following aspects:
 - 1. in addition to Ftrace, combining with eBPF support
 - 2. architecture redesign for better support existing Linux Kernel analysis and test utilities
 - 3. integrate eBPF-oriented tools like BCC, Drgn(github.com/osandov/ drgn), and kubectl-trace(github.com/iovisor/kubectl-trace)

Combining with BPF tracing

Better debug information

Better vmcores

Source: "drgn: Programmable Debugging", Omar Sandoval (Facebook), Linux Plumbers Conference 2019

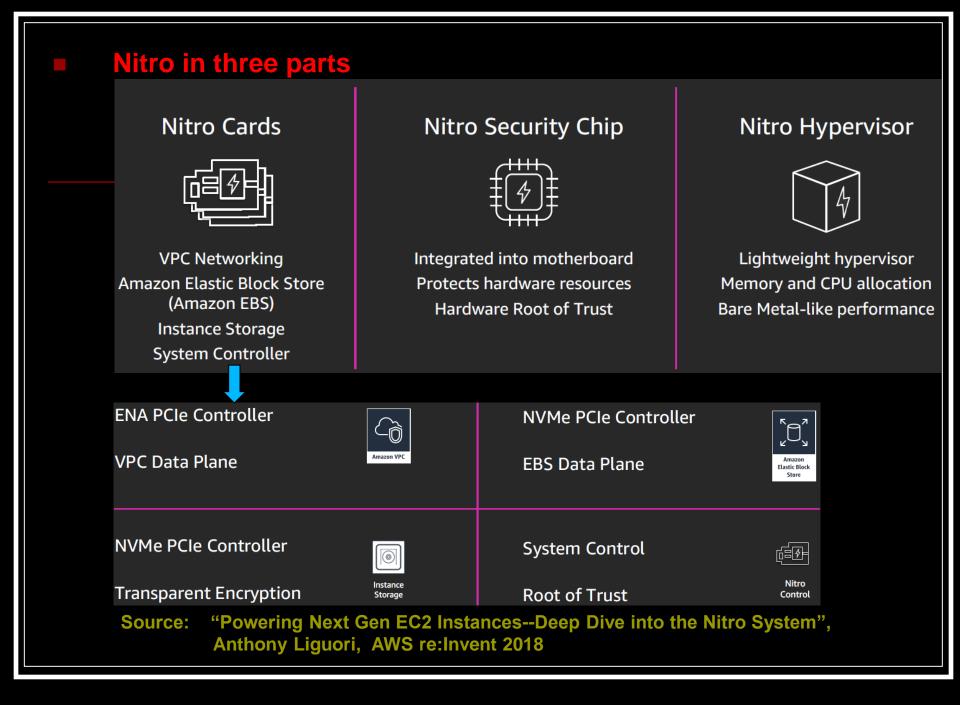
- 4. support hardware debug interface like JTAG and SWD, integrate good on-chip debugger like OpenOCD(http://openocd.org/), and gradually add full CoreSight (https://developer.arm.com/ architectures/cpu-architecture/debug-visibility-and-trace/ coresight-architecture) support in the future
- Pls refer to my presentation "Python for Linux Kernel Debugging" at PyCon China Hangzhou (Oct 19, 2019) for details & preliminary work

XI. Security

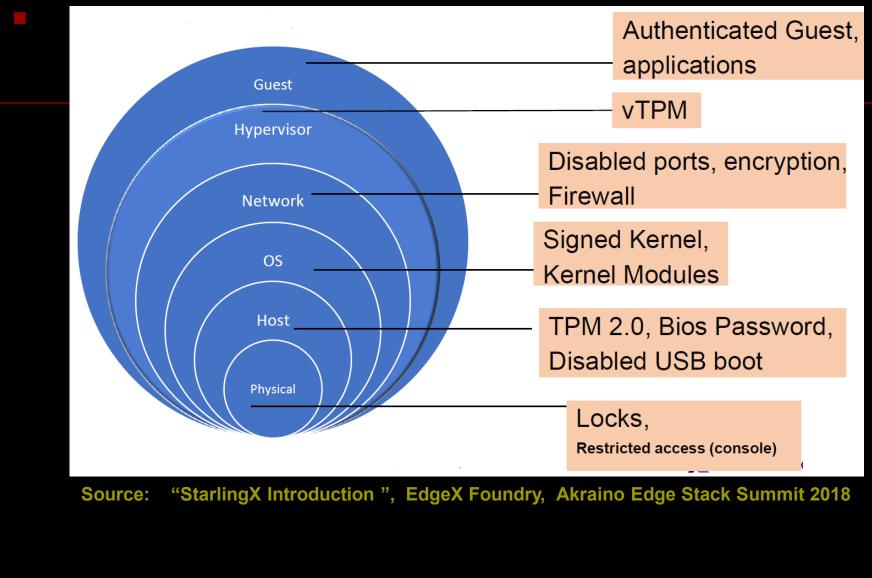
<u>Overview</u>

. . .

- https://en.wikipedia.org/wiki/Computer_security
 - https://en.wikipedia.org/wiki/Information_security
 - https://en.wikipedia.org/wiki/Data_security


1) Reference Design AWS Nitro System

https://aws.amazon.com/ec2/nitro/

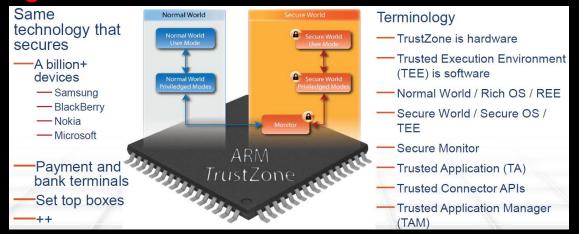

The AWS Nitro System is the underlying platform for our next generation of EC2 instances that enables AWS to innovate faster, further reduce cost for our customers, and deliver added benefits like increased security and new instance types.

AWS has completely re-imagined our virtualization infrastructure. Traditionally, hypervisors protect the physical hardware and bios, virtualize the CPU, storage, networking, and provide a rich set of management capabilities. With the Nitro System, we are able to break apart those functions, offload them to dedicated hardware and software, and reduce costs by delivering all of the resources of a server to your instances.

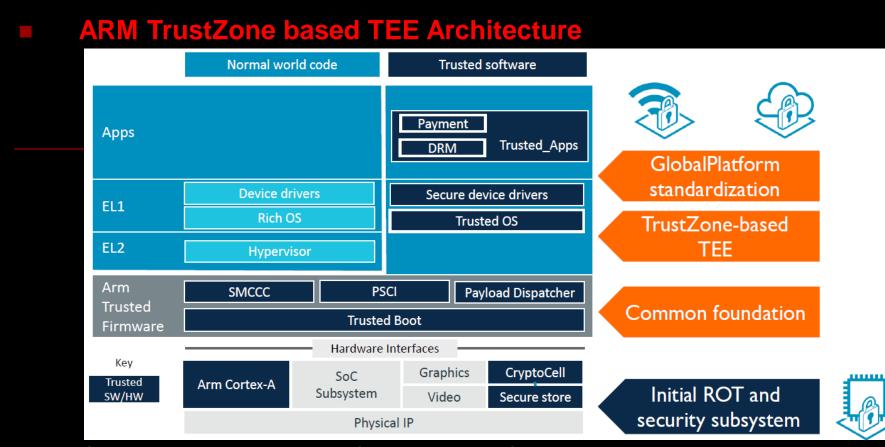
With the Nitro System, we shipped nearly 3x as many new instances in 2018 versus the prior year.

Security at Edge

2) Hardware-Software Co-designed System Security Hardware-Software Co-designed System and System Security


Hardware-Software Co-designed System and System Security is the trend in the real world

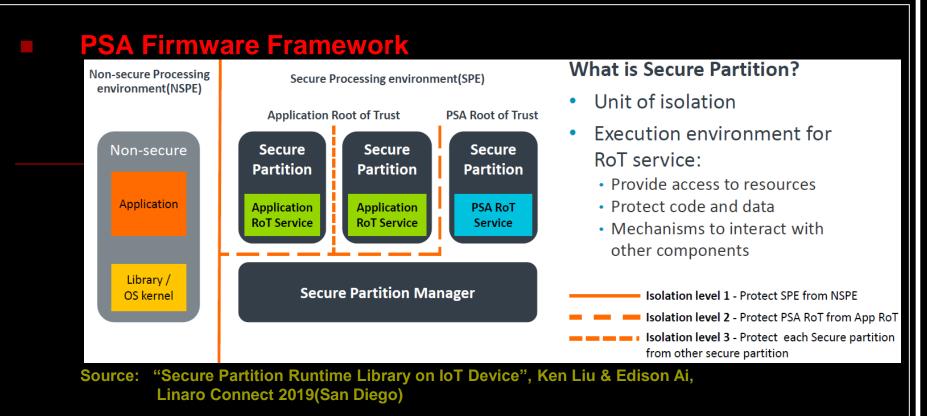
2.1 ARM for Security


https://www.arm.com/products/silicon-ip-security

<u>Trust Zone</u>

https://developer.arm.com/ip-products/security-ip/trustzone On-chip security enclave that provides hardware isolation and protection for sensitive material such as cryptographic keys, algorithms and data

Source: "EASING ACCESS TO ARM TRUSTZONE -- OP-TEE AND RASPBERRY PI 3", Sequitur Labs Inc , Linsro Connect LAS2016


Source: "Beyond TrustZone", Rob Coombs, ARM Tech Symposia 2017(Taipei)

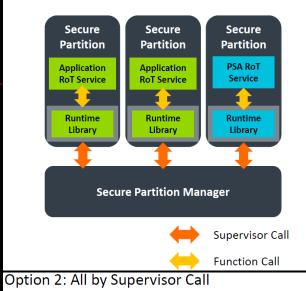
PSA (Platform Security Architecture)

. . .

Beyond TrustZone - Security Enclaves A programmable security enclave to extend fixed function CryptoCell family. TrustZone CryptoIslands - an additional family of security solutions by Arm. Aimed at providing on-die security services, in a physically isolated manner (host CPU agnostic). Axiom: less sharing of resources leads to	architecture	renneedure/plationn-security-
fixed function CryptoCell family. TrustZone CryptoIslands - an additional family of security solutions by Arm. Aimed at providing on-die security services, in a physically isolated manner (host CPU agnostic). Axiom: less sharing of resources leads to	Beyond TrustZone - Security End	claves
TrustZone Cryptolslands - an additional family of security solutions by Arm.Aimed at providing on-die security services, in a physically isolated manner (host CPU agnostic).Axiom: less sharing of resources leads to		HOST CPU
Aimed at providing on-die security services, in a physically isolated manner (host CPU agnostic). Axiom: less sharing of resources leads to		SoC Instruction TrustZone domain
Axiom: less sharing of resources leads to	in a physically isolated manner (host CPU	TrustZone Filters Cryptolsland APB bridge Flash Controller(s) Isolating I/F Secure Always On APB peripherals
smaller attack surface and fewer vulnerabilities.	smaller attack surface and fewer	Flash (internal / external) Boot ROM Alarms Secure RAM Roots of Cryptography Power Control
Certification, at a reasonable cost (i.e. reuse).	Certification, at a reasonable cost (i.e. reuse).	LCS Mgr control

https://www.arm.com/products/silicon-ip-security/cryptoisland

Placement of the Secure Partition Runtime Library


Option 1: Per-Partition Library

Secure

Partition

Application

RoT Service

Secure

Partition

Application

RoT Service

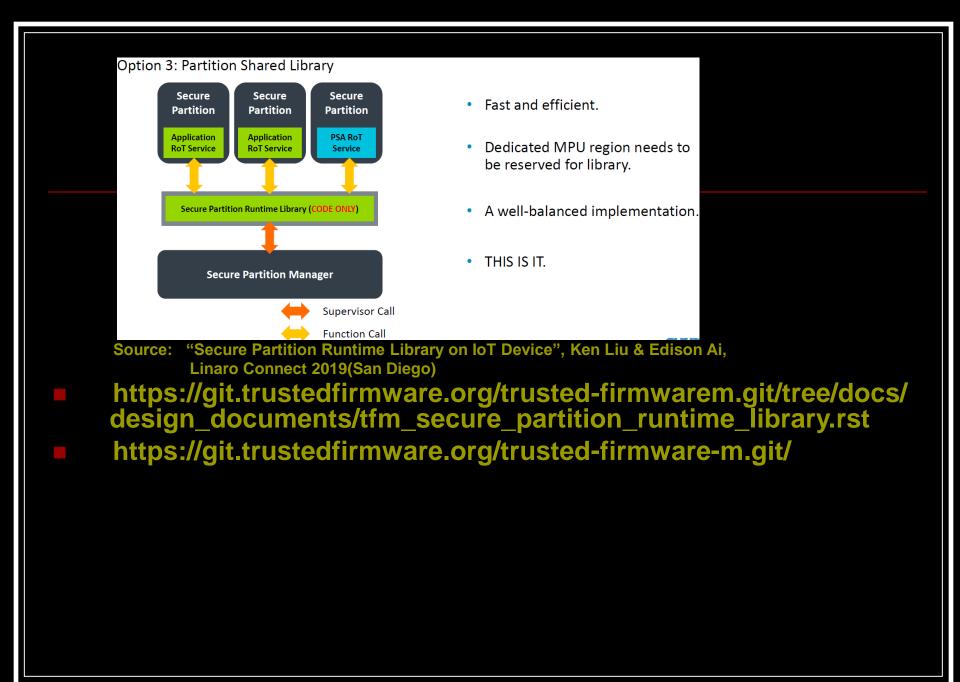
Secure Partition Runtime Library

Secure Partition Manager

Secure

Partition

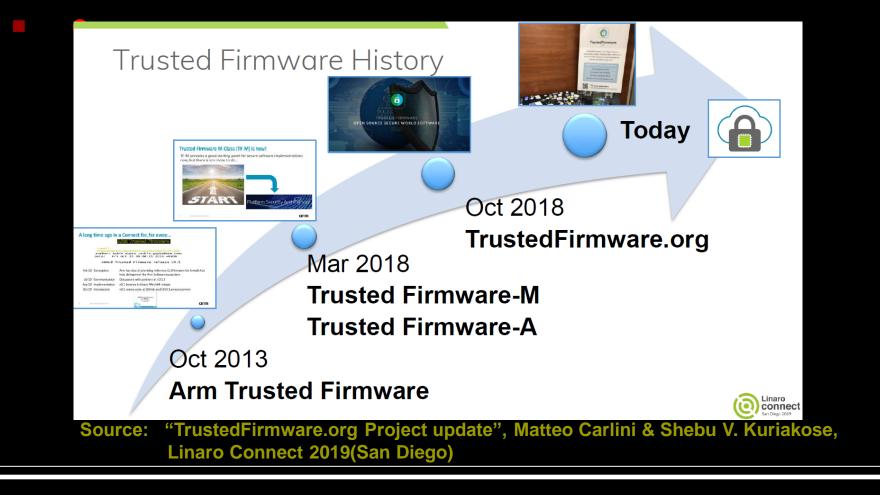
PSA RoT


Service

Supervisor Call

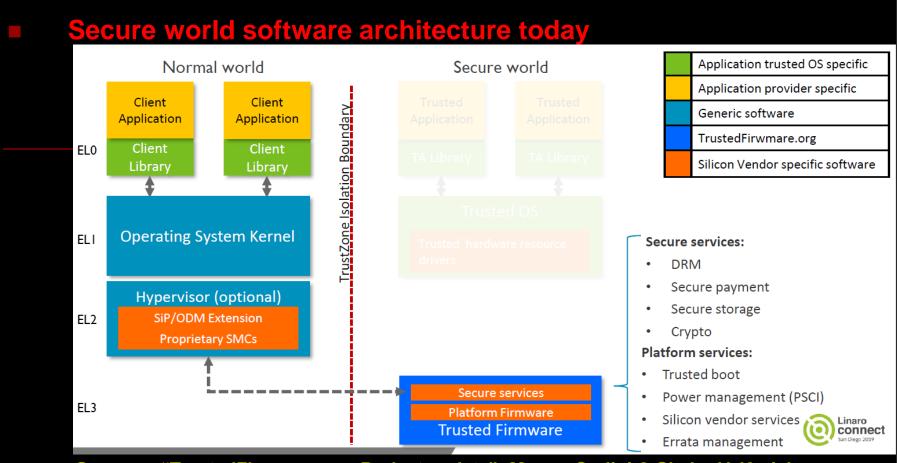
- Image size increases much.
- Hard to put into a single loaded Image.

- SPM consume more execution time.
- Library execution cannot be preempted.
- Library code runs under unnecessary privileged level.

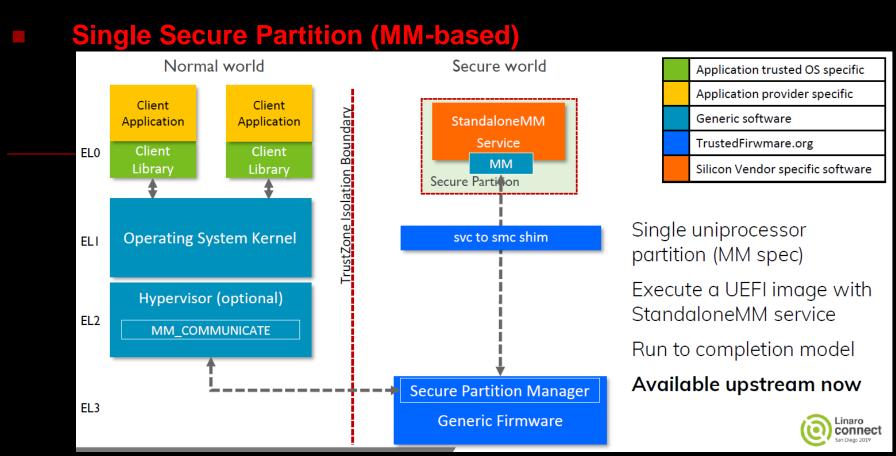

Source: "Secure Partition Runtime Library on IoT Device", Ken Liu & Edison Ai, Linaro Connect 2019(San Diego)

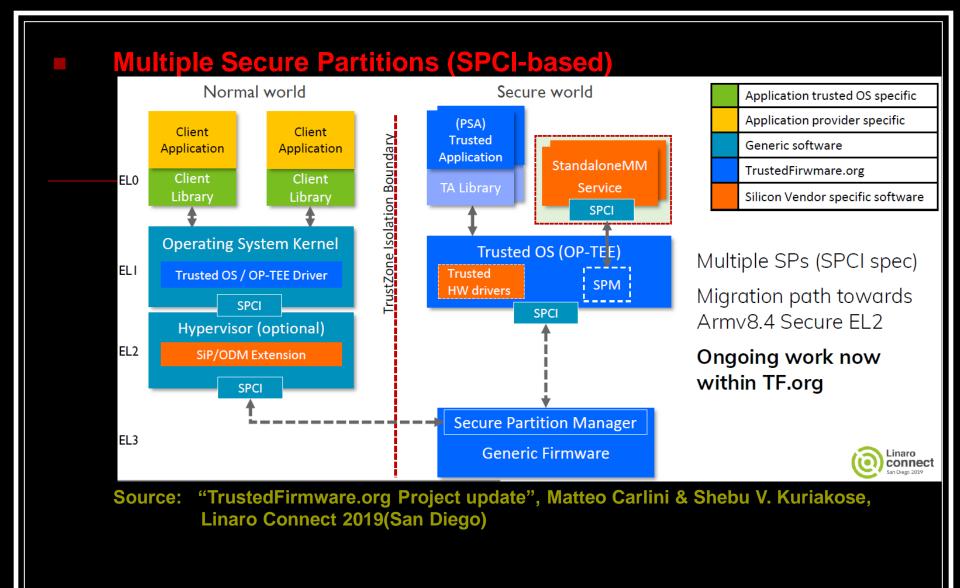


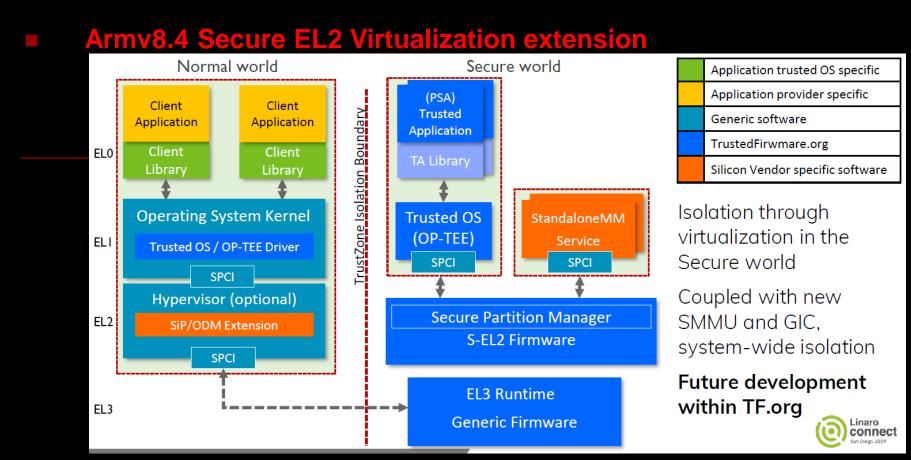
<u>Trusted Firmware</u>


https://www.trustedfirmware.org/

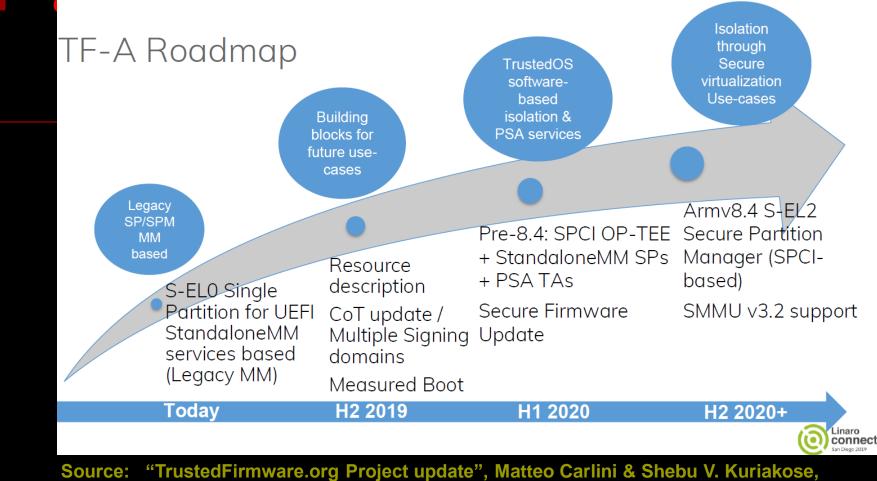
Trusted Firmware provides a reference implementation of secure world software for Armv8-A and Armv8-M. It provides SoC developers and OEMs with a reference trusted code base complying with the relevant Arm specifications. The code on this website is the preferred implementation of Arm specifications, allowing quick and easy porting to modern chips and platforms. This forms the foundations of a Trusted Execution Environment (TEE) on application processors, or the Secure Processing Environment (SPE) of microcontrollers.



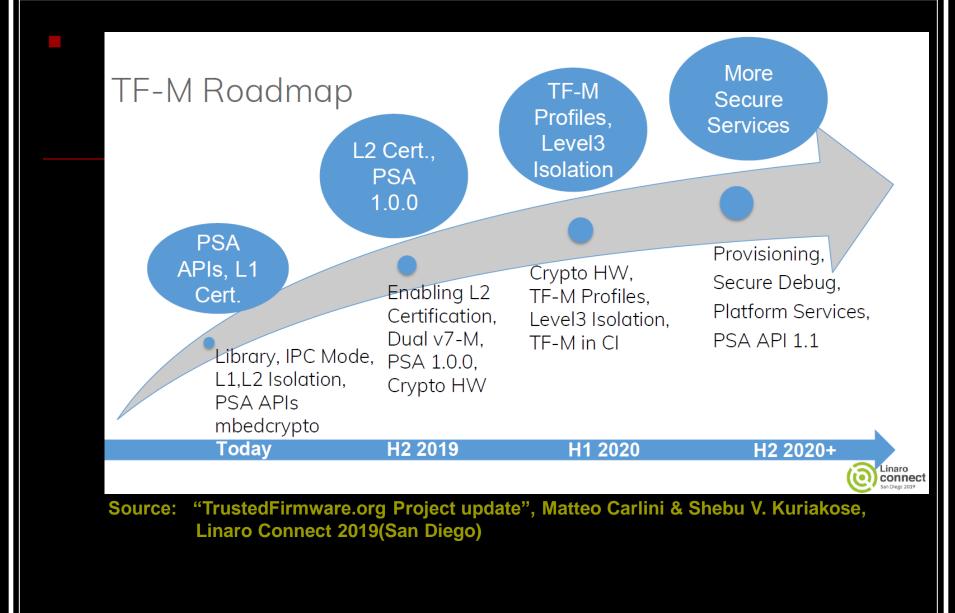

Linaro Connect 2019(San Diego)



Source: "TrustedFirmware.org Project update", Matteo Carlini & Shebu V. Kuriakose, Linaro Connect 2019(San Diego)



Source: "TrustedFirmware.org Project update", Matteo Carlini & Shebu V. Kuriakose, Linaro Connect 2019(San Diego)



Source: "TrustedFirmware.org Project update", Matteo Carlini & Shebu V. Kuriakose, Linaro Connect 2019(San Diego)

Linaro Connect 2019(San Diego)

Source: "TrustedFirmware.org Project update", Matteo Carlini & Shebu V. Kuriakose, Linaro Connect 2019(San Diego)

2.2 **OpenEnclave**

https://openenclave.io/sdk/

https://github.com/openenclave

Open Enclave (OE) is an SDK for building enclave applications in C and C++. An enclave application partitions itself into two components:

- 1. An untrusted component (called the host) and
- 2. A trusted component (called the enclave).

An *enclave* is a protected memory region that provides confidentiality for data and code execution. It is an instance of a Trusted Execution Environment (TEE) which is usually secured by hardware, for example, Intel Software Guard Extensions (SGX).

This SDK aims to generalize the development of enclave applications across TEEs from different hardware vendors. The current implementation provides support for Intel SGX as well as preview support for OP-TEE OS on ARM TrustZone. As an open source project, this SDK also strives to provide a transparent solution that is agnostic to specific vendors, service providers and choice of operating systems.

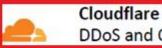
3) eBPF is playing a more and more important role in Linux system security

. . .

Sysdig

Weaveworks

Trace TCP events

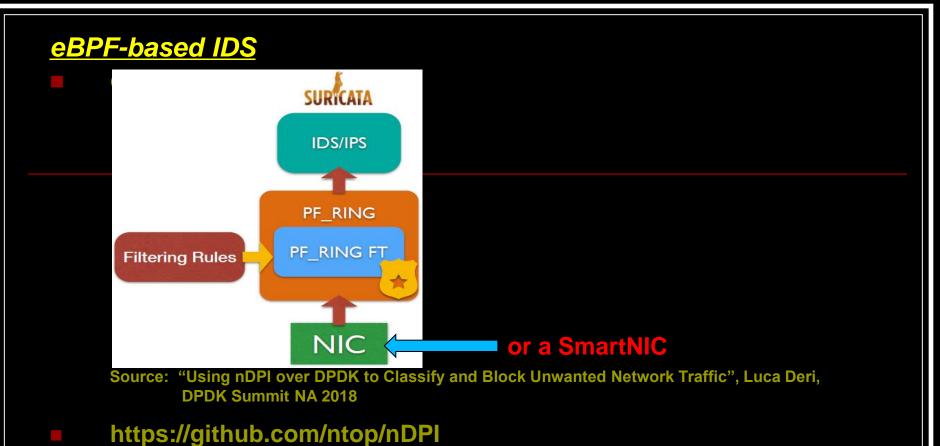

Netflix Performance profiling and tracing

eBPF instrumentation for high

performance system calls tracing

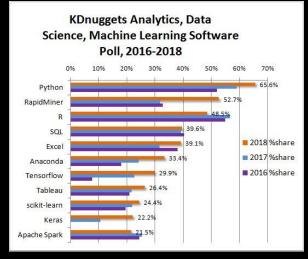
Facebook eBPF-based load balancer with DDoS

DDoS and Observability

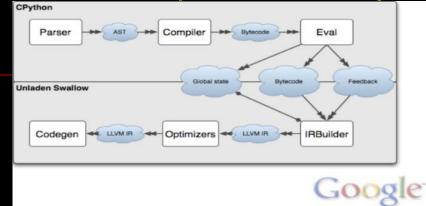

Cilium Powerful and efficient networking, security and load-balancing at L3-L7.

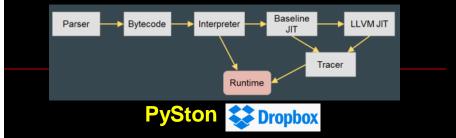
AWS Firecracker Using Seccomp BPF to restrict system calls.

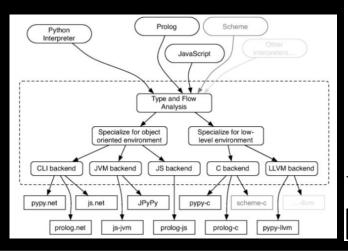
Redhat RHEL 7.6 enables extended eBPF in-kernel VM

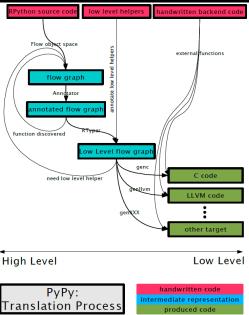

Source: "Back to the future with eBPF", Beatriz Martínez Rubio, KubeCon Europe 2019

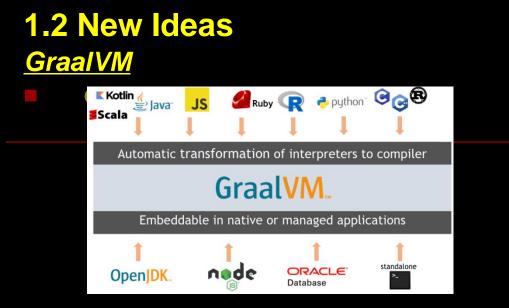
- //Open Source Deep Packet Inspection Software Toolkit
- https://suricata-ids.org/
- a network intrusion detection (IDS), inline intrusion prevention (IPS), network security monitoring (NSM)
- https://lwn.net/Articles/737771 Using eBPF and XDP in Suricata
- http://suricata.readthedocs.io/en/latest/capture-hardware/ebpfxdp.html?highlight=XDP


XII. Miscs 1) New Python Runtime <u>Why is it</u>


https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-sciencemachine-learning-results.html


Important Python Projects for HCI
 Build: Meson, SCons... DevOps: Ansible, SaltStack...
 AI: Keras, Scikit-Learn... Data Analyst: PyData, PySpark...
 Cloud/DataCenter: OpenStack, Airship(partially), Apache Airflow...
 Kubernetes Operator Pythonic Framework (Kopf)
 Security: a swiss knife for hackers...

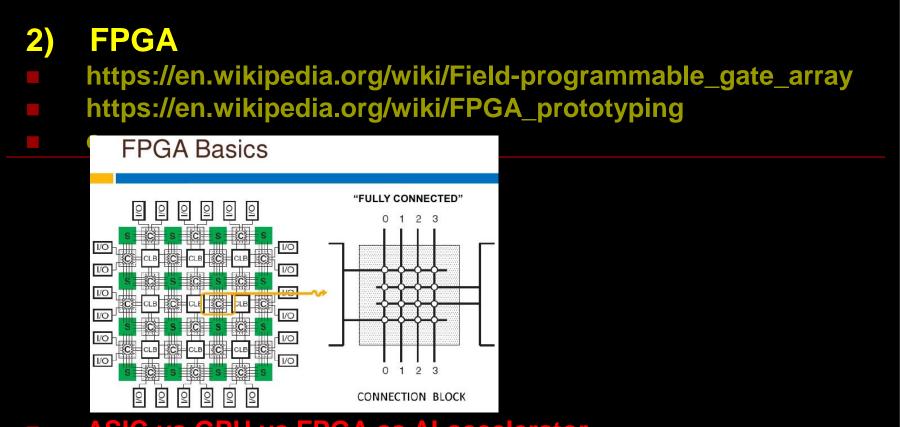

1.1 Previous Methods <u>LLVM-based (VMKit, MCJIT...)</u>



<u>Src2Src</u> <u>RPython</u> + Meta-tracing

<u>RustPython</u>

. . .


https://github.com/RustPython

<u>JITs</u>

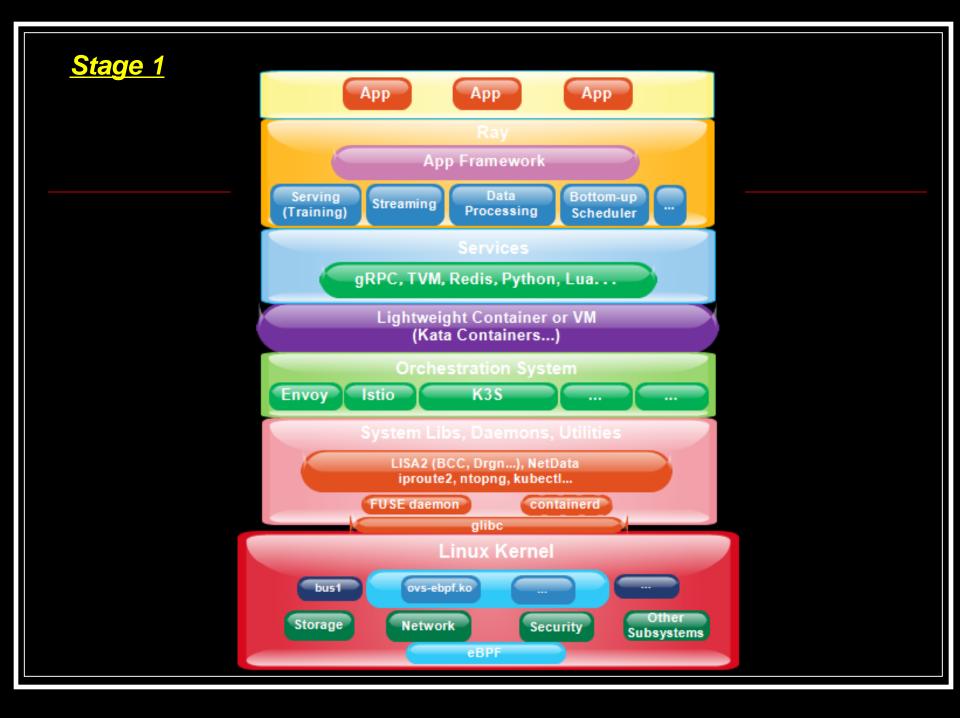
- https://github.com/thautwarm/restrain-jit
- https://github.com/Microsoft/Pyjion

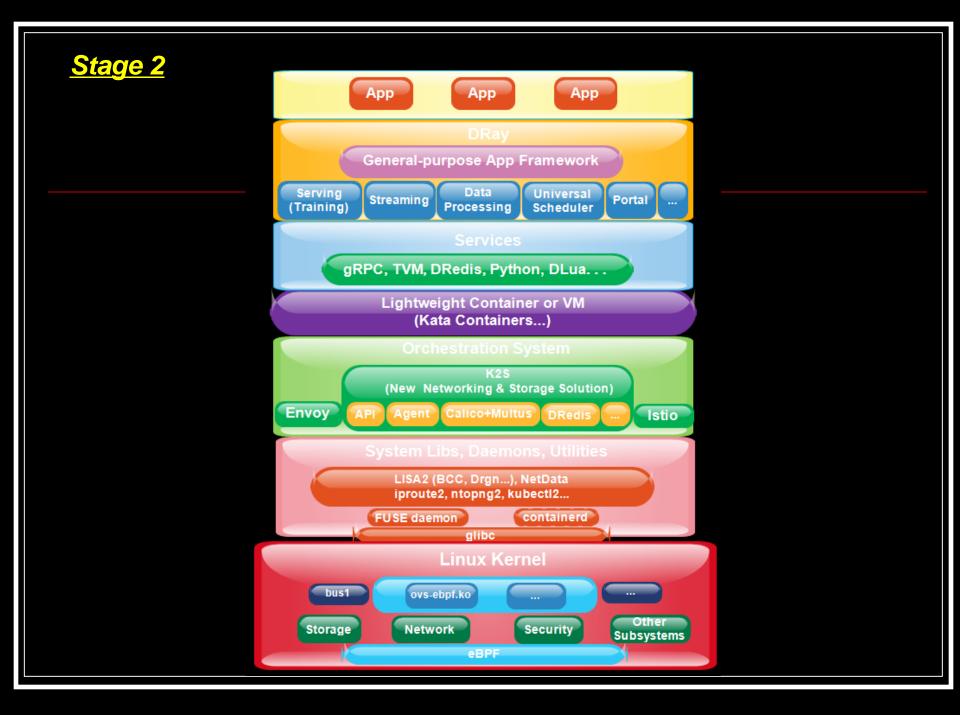
<u>BYOD</u>

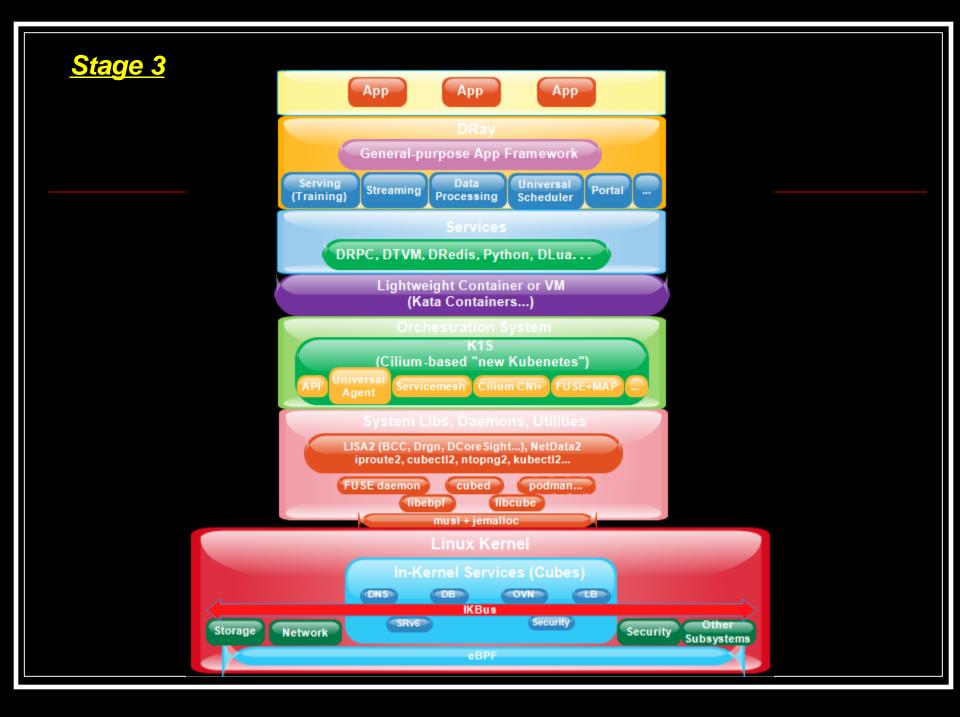
The initial demo of my own solution **DPython** will come in next year...

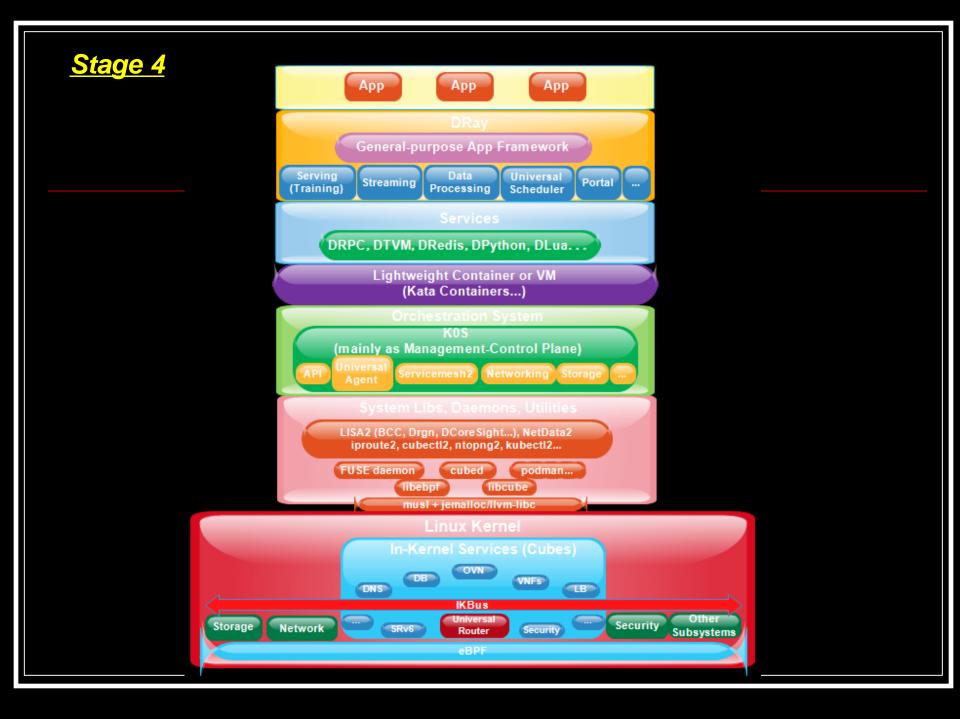
ASIC vs GPU vs FPGA as AI accelerator

2.1 Next Steps in our new development cluster <u>Networking</u>


- FPGA-based SmartNIC prototyping
 - FPGA-based programmable smart switch
- <u>A</u>
 - **FPGA-based AI accelerator**
 - ...


. . .


XIII. eBPF-centric New Design


1) System Architecture

an eBPF-centric new lightweight solution to meet our design goals & principles that described in section II, which is going to be divided into four stages

1.1 TuobaOS

- https://github.com/Yuwenfeng2019/TuobaOS
- developer friendly Linux distribution images that target at on Open Hardware development boards to achieve the following goals gradually:

<u>Stage 1</u>

. . .

- base on an existed distribution like Fedora, Manjaro, and so on
- upstreaming Linux Kernel with all the necessary HCI related features (e.g., eBPF, Virtualization, Debugging, Networking, Storage...)enabled according to our design
- all the necessary development required packages (such as that for programming language runtimes, developer toolkits, virtualization softwares, devops utilities, HPC/AI frameworks, security tools, and so on) are preinstalled

<u>Stage 2</u>

- get rid of the old GNU softwares and corresponding dependencies as much as possible, such like:
 - 1) remove GCC and use LLVM as the default toolchain to build everything like Linux Kernel
 - 2) replace glibc with musl libc (http://www.musl-libc.org/)
- upstreaming Linux Kernel with our own customization, especially for eBPF related code, and an In-Kernel messaging bus

Stage 3

. . .

- replace must libc with Ilvm-libc (https://llvm.org/docs/ Proposals/LLVMLibC.html) if the later is mature enough
- upstreaming Linux Kernel with all the In-Kernel services work as expected according to our design

The first release of TuobaOS images will come by the end of this year...

XIV. Wrap-up

- nearly every subsystem of Linux is or will be effected by eBPF, and eBPF is getting better, which is also hacker friendly.
 - smart and modular hardware design is the general situation.
- it's time to release the power of cluster computing on high cost-performance ratio SBC or SOM/COM.
- emerging hardware techniques like Persistent Memory (MRAM, PCRAM, ReRAM...) will dramatically change the underlying system design both in hardware and software.
- our design and implementation for HCI on Edge will meet the trend of Hardware-Software & Kernel Space/User Space unified design of a modern computer system, which aims at efficiency and flexibility.
- PoC and protyping development work will be gradually published at conferences or github -- I will continuously post the latest progress and promise this will be a fully open source project!
- Currently, there is no uniform solution for Edge Computing, since it relies primarily on actual requirements from the enterprise side, while such requirement may different from each other, so it leaves too much room for your imagination!

Thanks

Reference

Slides/materials from many and varied sources:

- http://en.wikipedia.org/wiki/
- http://www.slideshare.net/
- https://developer.arm.com/architectures/instruction-sets
- https://www.python.org
- http://llvm.org
- http://www.brendangregg.com/
- https://en.wikipedia.org/wiki/Just-in-time_compilation
- https://www.infoq.com/news/2019/05/kubernetes-future/
- https://www.infoq.cn/article/apache-arrow

....