
Efficient Monitoring and
Root Cause Analysis in

Complex Systems

Witek Bedyk

Agenda

● Benefits of robust monitoring

● Measurements vs. Alarms

● Importance of Alarms Correlation

● Effective Alerting

● Self-healing

Why is Monitoring useful?

● Improve system / application uptime

● Reduce administration burden

● Resource optimization

● Prevent bottlenecks

● Make use of collected data (e.g. billing)

Why is Monitoring useful?

● Improve system / application uptime

● Reduce administration burden

● Resource optimization

● Prevent bottlenecks

● Make use of collected data (e.g. billing)

Use Case

Customer escalation:

“We have cloud outage! Keystone is flapping up and down continuously
and many requests get 503 service unavailable error.”

Healthcheck

Simple HTTP endpoint up or down checks on services.

http_status [0, 1]
http_response_time

Metrics

● Metrics measure and report on quantifiable data from your system

● cpu, memory, network, filesystem, disk IO
● Services

○ MySQL, RabbitMQ, Apache, MemcacheD, etc.

● LibVirt, Open vSwitch
● Applications:

○ StatsD, Prometheus

● Custom checks

Dimensions

● Dimensions are a dictionary of key, value pairs used to describe metrics.

● hostname
● service
● component
● url
● device

Transaction-level vs. System-level metrics

● Transaction-level: end user perspective
○ Is Horizon working correctly?

● System-level: administrator perspective
○ Reveals failures of service components

Dependencies

MySQL

MemcacheDKeystoneApache

Gathered metrics

http_status
http_response_time
apache.net.hits
apache.performance.idle_worker_count
mysql.performance.open_files
mysql.net.connections
memcache.curr_connections
memcache.get_misses_rate
process.cpu_perc
process.open_file_descriptors

Dashboards

Alarms

Status of the system or resource meets criteria
indicating an action is required.

Alarm definitions

● Alarm definitions are templates specifying how alarms should be created.

● grouping

● http_status > 0, match_by: ["service", "component", "hostname", "url"]

● filtering

● avg(cpu.idle_perc{service=monitoring}) < 20

Use case (alarms)

Keystone API is down on node A.
Keystone API is down on node A.
Keystone API is down on node A.
Keystone API is down on node A.

Keystone API is up on node A.
Keystone API is up on node A.

MemcacheD number of connections is high on node A.

Keystone API is up on node A.Keystone API is up on node A.

MemcacheD hit rate is low on node A.

Alarms correlation

● “80% of the mean time to repair is wasted on trying to locate the issue”
Gartner

● Remove noise from the environment
● Alerts should be:

○ meaningful
○ actionable
○ indicate the point of failure

Vitrage

● OpenStack Root Cause Analysis service

● organize alarms
○ define relationships between alarms
○ represent as an entity graph

● analyze
○ represent system health

● find root cause
○ graphical visualization

Dependencies

MySQL

MemcacheDKeystoneApache

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Dependencies

Keystone cluster

Keystone instances

MemcacheD

Monitor Analyze Plan Execute (MAPE)

Monitor Execute

Sensors Effectors

Analyze

Managed
Resource

Plan

Monitor Analyze Plan Execute (MAPE)

Monitor Execute

Sensors Effectors

Analyze

Managed
Resource

Plan

Vitrage Templates

● Vitrage Templates are used to express Condition Action scenarios.→

● if <condition> then raise deduced alarm
● if <condition> then set deduced state
● if <condition> then add causal relationship (used for RCA capability)
● if <condition> then execute Mistral workflow

Self-healing

Keystone cluster

Keystone instances

MemcacheD

Self-healing

Keystone cluster

Keystone instances

MemcacheD

Self-healing

Keystone cluster

Keystone instances

MemcacheD

Self-healing

Keystone cluster

Keystone instances

MemcacheD

OpenStack Healthcheck APIs

● more detailed checks would be useful for most OpenStack services
● common middleware should get implemented in Oslo
● existing old effort:

○ https://storyboard.openstack.org/#!/story/2001439
○ https://review.opendev.org/617924

Summary

● Robust monitoring is essential

● Measurements vs. Alarms

● Importance of Alarms Correlation

● Self-healing

Thank You
谢谢

Questions and Answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

