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Agenda

● Benefits of robust monitoring

● Measurements vs. Alarms

● Importance of Alarms Correlation

● Effective Alerting

● Self-healing



Why is Monitoring useful?

● Improve system / application uptime

● Reduce administration burden

● Resource optimization

● Prevent bottlenecks

● Make use of collected data (e.g. billing)
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Use Case

Customer escalation:

“We have cloud outage! Keystone is flapping up and down continuously 
and many requests get 503 service unavailable error.”



Healthcheck

Simple HTTP endpoint up or down checks on services.

http_status [0, 1]
http_response_time



Metrics

● Metrics measure and report on quantifiable data from your system

● cpu, memory, network, filesystem, disk IO
● Services

○ MySQL, RabbitMQ, Apache, MemcacheD, etc.

● LibVirt, Open vSwitch
● Applications:

○ StatsD, Prometheus

● Custom checks



Dimensions

● Dimensions are a dictionary of key, value pairs used to describe metrics.

● hostname
● service
● component
● url
● device



Transaction-level vs. System-level metrics

● Transaction-level: end user perspective
○ Is Horizon working correctly?

● System-level: administrator perspective
○ Reveals failures of service components 



Dependencies

MySQL

MemcacheDKeystoneApache



Gathered metrics

http_status
http_response_time
apache.net.hits
apache.performance.idle_worker_count
mysql.performance.open_files
mysql.net.connections
memcache.curr_connections
memcache.get_misses_rate
process.cpu_perc
process.open_file_descriptors



Dashboards



Alarms

Status of the system or resource meets criteria
indicating an action is required.



Alarm definitions

● Alarm definitions are templates specifying how alarms should be created.

● grouping

● http_status > 0, match_by: ["service", "component", "hostname", "url"]

● filtering

● avg(cpu.idle_perc{service=monitoring}) < 20



Use case (alarms)

Keystone API is down on node A.
Keystone API is down on node A.
Keystone API is down on node A.
Keystone API is down on node A.

Keystone API is up on node A.
Keystone API is up on node A.

MemcacheD number of connections is high on node A.

Keystone API is up on node A.Keystone API is up on node A.

MemcacheD hit rate is low on node A.



Alarms correlation

● “80% of the mean time to repair is wasted on trying to locate the issue” 
Gartner

● Remove noise from the environment
● Alerts should be:

○ meaningful
○ actionable
○ indicate the point of failure



Vitrage

● OpenStack Root Cause Analysis service

● organize alarms
○ define relationships between alarms
○ represent as an entity graph

● analyze
○ represent system health

● find root cause
○ graphical visualization
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Monitor Analyze Plan Execute (MAPE)
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Vitrage Templates

● Vitrage Templates are used to express Condition  Action scenarios.→

● if <condition> then  raise deduced alarm
● if <condition> then  set deduced state
● if <condition> then  add causal relationship (used for RCA capability)
● if <condition> then  execute Mistral workflow



Self-healing
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OpenStack Healthcheck APIs

● more detailed checks would be useful for most OpenStack services
● common middleware should get implemented in Oslo
● existing old effort:

○ https://storyboard.openstack.org/#!/story/2001439
○ https://review.opendev.org/617924



Summary

● Robust monitoring is essential

● Measurements vs. Alarms

● Importance of Alarms Correlation

● Self-healing



Thank You
谢谢

Questions and Answers
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