SUSE Enterprise Storage 5.5
Object Storage Metadata Sync Module Configuration
Elasticsearch, Fluentbit, Kibana (EFK Stack)

Setup of EFK Stack
Install SLES 15 SP1

Install Elasticsearch
- Download the rpm version (7.0.1) from
https://www.elastic.co/downloads/elasticsearch

zypper in elasticsearch-7.0.1-x86_64.rpm

Test the service is alive and responding curl http://localhost:9200/

Response
curl http://localhost:9200
{
"name" : "efk-server",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "btjzcngDTuuNSyVNuPtfbA",
"version" : {
"number" : "7.0.1",
"build_flavor" : "default",
"build_type" : "rpm",
"build_hash" : "edefcb5",
"build_date" : "2019-04-29T12:56:03.145736Z",
"build_snapshot" : false,
"lucene_version" : "8.0.0",
"minimum_wire_compatibility_version" : "6.7.0",
"minimum_index_compatibility_ version" : "6.0.0-betal"
3
"tagline" : "You Know, for Search"
3

Fluentbit Installation:
vi td-agent-bit.repo

cat td-agent-bit.repo

[td-agent-bit]

name = TD Agent Bit

baseurl = http://packages.fluentbit.io/centos/7
gpgcheck=1
gpgkey=http://packages.fluentbit.io/fluentbit.key
enabled=1

zypper ref td-agent-bit
Retrieving repository 'TD Agent Bit' metadata

------------------------- [1]

Warning: File 'repomd.xml' from repository 'TD Agent Bit' is unsigned.

Note: Signing data enables the recipient to verify that no modifications
occurred after the data

were signed. Accepting data with no, wrong or unknown signature can lead to a
corrupted system

and in extreme cases even to a system compromise.

Note: File 'repomd.xml' is the repositories master index file. It ensures the
integrity of the
whole repo.

Warning: We can't verify that no one meddled with this file, so it might not be
trustworthy
anymore! You should not continue unless you know it's safe.

File 'repomd.xml' from repository 'TD Agent Bit' is unsigned, continue? [yes/no]
(no): yes
Retrieving repository 'TD Agent Bit'

Metadata ..ot i e e
............................... [done]

Building repository 'TD Agent Bit'

(o= Lo o 1=
................................. [done]

Specified repositories have been refreshed.

zypper in td-agent-bit

Refreshing service 'Basesystem_Module_x86_64".

Refreshing service 'SUSE_Linux_Enterprise_Server_x86_64".
Refreshing service 'Server_Applications_Module_x86_64".
Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following NEW package is going to be installed:
td-agent-bit

The following package has no support information from its vendor:
td-agent-bit

1 new package to install.
Overall download size: 5.4 MiB. Already cached: 0 B. After the operation,
additional 20.7 MiB will be used.
Continue? [y/n/v/...? shows all options] (y): vy
Retrieving package td-agent-bit-1.1.0-1.x86_64
(1/1), 5.4 MiB (20.7 MiB unpacked)
Retrieving: td-agent-bit-1.1.0-
Lo XBB B4 FPM vt ittt ettt ettt e e e e
......................... [done (2.8 MiB/s)]
td-agent-bit-1.1.0-1.x86_64.rpm:
Header V4 RSA/SHA256 Signature, key ID 6ea®722a: NOKEY

Looking for gpg key ID 6EAOG722A in cache /var/cache/zypp/pubkeys.

Looking for gpg key ID 6EAQ722A in repository TD Agent Bit.
gpgkey=http://packages.fluentbit.io/fluentbit.key

Retrieving:

FlUENtD At . KeY i e e e e e e e

.. [done]
New repository or package signing key received:

Repository: TD Agent Bit

Key Name: Eduardo Silva <eduardo@treasure-data.com>
Key Fingerprint: F209D876 2A60CD49 E680633B 4FF8368B G6EAQ722A
Key Created: Tue 05 Jul 2016 09:58:07 PM MDT

Key Expires: (does not expire)

Subkey: AE8602F007A243C2 2015-08-31 [does not expire]
Rpm Name: gpg-pubkey-6ea0®722a-577c81cf

Do you want to reject the key, or trust always? [r/a/?] (r): a
Checking for file
o0 0 5 o

(1/1) Installing: td-agent-bit-1.1.0-
1 T

Kibana Installation

zypper in kibana-7.0.0-x86_64.rpm

Refreshing service 'Basesystem_Module_x86_64".

Refreshing service 'SUSE_Linux_Enterprise_Server_x86_64".
Refreshing service 'Server_Applications_Module_x86_64".
Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following NEW package is going to be installed:
kibana

The following package has no support information from its vendor:
kibana

1 new package to install.
Overall download size: 165.0 MiB. Already cached: 0@ B. After the operation,
additional 397.2 MiB will be used.
Continue? [y/n/v/...? shows all options] (y): vy
Retrieving package kibana-7.0.0-1.x86_64
(1/1), 165.0 MiB (397.2 MiB unpacked)
kibana-7.0.0-x86_64.rpm:
Header V4 RSA/SHA512 Signature, key ID d88e42b4: NOKEY

Looking for gpg key ID D88E42B4 in cache /var/cache/zypp/pubkeys.

Repository Plain RPM files cache does not define additional 'gpgkey=' URLS.
kibana-7.0.0-1.x86_64 (Plain RPM files cache): Signature verification failed [4-
Signatures public key is not available]

Abort, retry, ignore? [a/r/i] (a): i

Checking for file

oo o o o=

(1/1) Installing: kibana-7.0.0-
L XBB B i e

Additional rpm output:
warning: /var/cache/zypper/RPMS/kibana-7.0.0-x86_64.rpm: Header V4 RSA/SHA512
Signature, key ID d88e42b4: NOKEY

Ceph radosgw Configuration

Configure Deepsea to deploy custom RGW roles

First we will walk through the process of teaching Deepsea to deploy a custom RGW
role. For this case it will be for a separate zone which will be used for sending
its metadata to elasticsearch. This will also allow us to have two RGW gateways
running on the same node with different ports.

Since we are using Deepsea it automatically sets up a default system user with
default zone and zonegroup that its tied to. We will let this stay intact and not
modify it, but will create our own sets of system users, realm, zones, and
zonegroup so that we can set things up for elasticsearch. The future will see much
improvement in this area around Deepsea and ceph manager.

Modify Ceph configuration files

In this step we will create the two new radosgw services that can be referenced on
the node we will be running it.

One will be for the elasticsearch called zone us-west-2 and the other will be zone
us-west-1.

Change your directory to /srv/salt/ceph/configuration/files/
$ cd /srv/salt/ceph/configuration/files/

Copy the rgw.conf file to a new file for your elasticsearch role
$ cp rgw.conf rgw-elasticsearch.conf
$ cp rgw.conf rgw-us-west-1.conf

Open the file rgw-us-west-1.conf and change the values for the port and assigned
zone. The results should be like the output below. Save the file and quit. The “rgw
zone” parameter that has been added will be the zone that we create at a later
step.

$ cat rgw-us-west-1.conf

[client.{{ client }}]

rgw zone = "us-west-1"

rgw frontends = "civetweb port=8000"
rgw dns name = {{ fqdn }}

rgw enable usage log = true

Open the file rgw-elasticsearch.conf and change the values for the port and
assigned zone. The results should be like the output below. Save the file and quit.
The “rgw zone” parameter that has been added will be the zone that we create at a
later step that is used for sending metadata to elasticsearch.

$ cat rgw-elasticsearch.conf

[client.{{ client }}]

rgw zone = "us-west-2"

rgw frontends = "civetweb port=8002"
rgw dns name = {{ fgdn }}

rgw enable usage log = true

Change your directory to /srv/salt/ceph/rgw/files/
$ cd /srv/salt/ceph/rgw/files/

Copy the rgw.j2 file to your new role file as rgw-elasticsearch.j2
$ cp rgw.j2 rgw-elasticsearch.j2
$ cp rgw.j2 rgw-us-west-1.j2

Nothing needs to change in these files. Its all ready.

global.yml changes

open the file /srv/pillar/ceph/stack/global.yml and add the following. Your email,
name, or uid might be different. Once your finished then save the file and quit.

rgw_configurations:
rgw:

users:
- { uid: "admin", name: "Admin", email: "admin@susedojo.com", system: True }
when using only RGW& not ganesha ssl will have all the users of rgw already,
but to be consistent we define atleast one user
rgw-elasticsearch:
users:
- { uid: "zone.user", name: "Zone Admin", email: "zoneadmin@susedojo.com",
system: True }
rgw-us-west-1:
users:
- { uid: "zone.user", name: "Zone Admin", email: "zoneadmin@susedojo.com",
system: True }

Update policy.cfg
Now we can add the new role to the configuration proposal.

Open the file /srv/pillar/ceph/proposals/policy.cfg and add your new roles you just
created in the previous step so it looks similar to the below output. Your cluster
nodes will be different in your environment so change ses-node4 to match your
setup.

RGW

role-rgw/cluster/ses-node4*.sls
role-rgw-elasticsearch/cluster/ses-node4*.sls
role-rgw-us-west-1/cluster/ses-node4*.sls

Execute Deepsea stages [1-4]
Each stage needs to be rerun because of the creation of a new role.

$ deepsea stage run ceph.stage.
$ deepsea stage run ceph.stage.
$ deepsea stage run ceph.stage.
$ deepsea stage run ceph.stage.

A WNBR

After running stage 4 you will notice that two of the three radosgw daemons won’t
start. This is fine since we have not created the zones for them yet. The output
looks like below.

Ended stage: ceph.stage.4 succeeded=16/17 failed=1/17 time=96.0s
Failures summary:

ceph.rgw (/srv/salt/ceph/rgw):
ses-node4.susedojo.com:
start rgw-us-west-1: Service ceph-radosgw@rgw-us-west-1l.ses—node4 is already
enabled, and 1is dead
start rgw-elasticsearch: Service ceph-radosgw@rgw-elasticsearch.ses—-node4 is
already enabled, and is dead

The default radosgw setup will have a single admin user with a zone and zonegroup
called default.

System Key and RGW Host Parameters

Since there are multiple zones we will use the zone.user system key for cross
radosgw communications. First we will create the access-key and secret that will
later be used in the creation of the zone.user, but for now we can’t since order
here does matter.

The variables we will be using for the CLI commands related to radosgw-admin are
the following.

SYSTEM_ACCESS_KEY=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 20 | head -n 1)
SYSTEM_SECRET_KEY=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 40 | head -n 1)
RGW_HOST=Rados Gateway host name (in this example its ses-node4.susedojo.com)

These variables can be set directly in the shell and called through the commands
given in the next steps.

Create a Realm
$ radosgw-admin realm create --rgw-realm=gold --default

Create zonegoup

The zonegroup that we create here will contain both the data zone and the
elasticsearch zone, which will share the same data set. Change the RGW_HOST to
match your environment. The port 8000 is what we setup for the radosgw daemon that
is for the master zone we will create next. There is a port 80 which is the radosgw
daemon that deepsea had setup for the “default” zone.

$ radosgw-admin zonegroup create --rgw-zonegroup=boise
--endpoints=http://$RGW_HOST:8000 --master --default

{

"id": "Oc3bc24d-11c7-4214-98d9-0bla764c65e5",

"name": "boise",

"api_name": "boise",

"is_master": "true",

"endpoints": [

"http://ses-node4.susedojo.com:8000"

1,

"hostnames": [],

"hostnames_s3website": [],

"master_zone": "",

"zones": [],

"placement_targets": [],

"default_placement": "",

"realm_id": "73098396-10ff-4ff8-8a39-3da6415db903"
}

Create a Zone
We now create the normal zone where we will store the object data.
For the SYSTEM_ACCESS_KEY, SYSTEM_SECRET_KEY, and RGW_HOST parameters refer back to
the section “System Key and RGW Host Parameters”
$ radosgw-admin zone create --rgw-zonegroup=boise --rgw-zone=us-west-1 \
--endpoints=http://$RGW_HOST:8000 --access-key=$SYSTEM_ACCESS_KEY \
--secret=$SYSTEM_SECRET_KEY --default --master
{
"id": "887e1765-7e0f-4936-ad32-1da30928dfce",
"name": "us-west-1",
"domain_root": "us-west-1.rgw.meta:root",
"control_pool": "us-west-1.rgw.control",
"gc_pool": "us-west-1.rgw.log:gc",
"lc_pool": "us-west-1.rgw.log:1lc",
"log_pool": "us-west-1.rgw.log",
"intent_log_pool": "us-west-1.rgw.log:intent",
"usage_log_pool": "us-west-1.rgw.log:usage",
"reshard_pool": "us-west-1.rgw.log:reshard",
"user_keys_pool": "us-west-1.rgw.meta:users.keys",

"user_email_pool": "us-west-1.rgw.meta:users.email",
"user_swift_pool": "us-west-1.rgw.meta:users.swift",
"user_uid_pool": "us-west-1.rgw.meta:users.uid",
"system_key": {

"access_key": "9AQ7TW70A38JFOMIMCY9",

"secret_key": "MupKyw7vCKmQHLaK9U1SwshoR2yHBCPEGNOSXK1K"
3

"placement_pools": [

"key": "default-placement",

"Val" : {
"index_pool": "us-west-1.rgw.buckets.index",
"data_pool": "us-west-1.rgw.buckets.data",
"data_extra_pool": "us-west-1.rgw.buckets.non-ec",
"index_type": 0,
"compression": ""
}
}
1,
"metadata_heap": "",

"tier_config": [],
"realm_id": "73098396-10ff-4ff8-8a39-3da6415db903"

}

Remove default zone and zonegroup

Since in SUSE Enterprise Storage 5.5 you setup your radosgw through deepsea it
automatically starts up the radosgw daemon and then creates the default zone and
zonegroup. So these must be removed in order to move forward with multiple zones.

radosgw-admin zonegroup remove --rgw-zonegroup=default --rgw-zone=default
radosgw-admin period update --commit

radosgw-admin zone delete --rgw-zone=default

radosgw-admin period update --commit

radosgw-admin zonegroup delete --rgw-zonegroup=default

radosgw-admin period update --commit

R RV R R TR 1)

Listing them now reveals only the zone and zonegroup you have defined.

$ radosgw-admin zonegroup list
$ radosgw-admin zone list

Create system user

The system user will be used to access the radosgw REST API and zone
synchronization. This user is in addition to the admin user that deepsea already
creates and ties to the default zone. The creation will auto generate the access
and secret key used in future steps.

$ radosgw-admin user create --uid=zone.user --display-name="Zone User" --access-
key=$SYSTEM_ACCESS_KEY --secret=$SYSTEM_SECRET_KEY --system

$ radosgw-admin user list

[
]

Update the period

This commits the federation changes we’ve proposed so that the zones will start
talking to each other.

$ radosgw-admin period update --commit

"zone.user"

"id": "8f2fc412-e4f9-4f00-bfab-6c60b09cabab",

"epoch": 1,
"predecessor_uuid": "32d0e270-0220-4ac7-86bf-a8114d34b825",
"sync_status": [],
"period_map": {
"id": "8f2fc412-e4f9-4f00-bfab-6c60b09cabab",
"zonegroups": [

"realm_id": "73098396-10ff-4ff8-8a39-3da6415db903",
"realm_name": '"gold",
"realm_epoch": 2

}

Restart the RadosGW

Login to the node which will be running the three RGW services

This will start the radosgw daemon and tie it to zone us-west-1 with port 8000
$ systemctl restart ceph-radosgw@rgw-us-west-1.ses-node4.service

$ ss -4nlp | grep 8000
tcp LISTEN (0] 128 *:8000 *ox
users: (("radosgw",pid=87906, fd=46))

Configure second zone in the same cluster, used for metadata indexing

This is the zone and radosgw daemon that will be dedicated for sending metadata to
elasticsearch.

For the SYSTEM_ACCESS_KEY, SYSTEM_SECRET_KEY, and RGW_HOST parameters refer back to
the section “System Key and RGW Host Parameters”

$ radosgw-admin zone create --rgw-zonegroup=boise --rgw-zone=us-west-2 \
--access-key=$SYSTEM_ACCESS_KEY --secret=$SYSTEM_SECRET_KEY \
--endpoints=http://$RGW_HOST:8002

Elasticsearch zone modify configuration
Here we will specify that the zone is an elasticsearch type and its associated
endpint for the Elasticsearch API. In this case our efk-server we setup earlier.

$ radosgw-admin zone modify --rgw-zone=us-west-2 --tier-type=elasticsearch --tier-
config=endpoint=http://efk-server.susedojo.com:9200, num_shards=10, num_replicas=1

Update the period

This commits the federation changes we’ve proposed so that the zones will start
talking to each other.

$ radosgw-admin period update --commit

Restart the second RadosGW

Login to the node which will be running the three RGW services

This will start the radosgw daemon and tie it to zone us-west-2 with port 8002
$ systemctl restart ceph-radosgw@rgw-elasticsearch.ses-node4.service

$ ss -4nlp | grep 8002
tcp LISTEN 0] 128 *:8002 *ox
users: (("radosgw",pid=88698, fd=86))

Status of services

$ ps auxf | grep radosgw

ceph 87906 0.3 0.8 5175324 64728 ? Ssl 16:46 0:05 /usr/bin/radosgw
-f --cluster ceph --name client.rgw-us-west-1.ses-node4 --setuser ceph --

setgroup ceph

ceph 88698 2.2 0.8 5181472 64516 ? Ssl 17:08 0:02 /usr/bin/radosgw
-f --cluster ceph --name client.rgw-elasticsearch.ses-node4 --setuser cep

mailto:ceph-radosgw@rgw-us-west-1.ses-node4.service
mailto:ceph-radosgw@rgw-us-west-1.ses-node4.service

h --setgroup ceph
You now have radosgw daemons for each zone running.

Create a user for bucket access
$ radosgw-admin user create --uid=cseader --display-name="Cameron Seader”

