
Shared Storage for Container Orchestrators
with Manila

Goutham Pacha Ravi <gouthampravi@gmail.com>
irc: gouthamr

05.01.2019

Victoria Martinez de la Cruz <victoria@redhat.com>
irc: vkmc

Open Infrastructure Summit 2019, Denver, CO

Tom Barron <tpb@dyncloud.net>
 irc: tbarron

mailto:victoria@redhat.com

Manila integrated into OpenStack

Consumption

Service architecture

Manila is Open File System Infrastructure

Loosely coupled with Nova and other OpenStack components

Serves Storage over Network rather than through a hypervisor

Some have argued that this is a weakness in traditional Nova-centric OpenStack

But it is a strength in the new Open Infrastructure world order

Supports both proprietary and production-quality open-source back
ends.

You can use Open Source software defined Ceph Storage for:
● Objects in Container Buckets
● Block devices
● File Systems

File Systems can be presented over NFS in addition to native CephFS.

File systems can be presented to VMs, bare metal, and containers
running in VMs or on bare metal, inside or outside of OpenStack.

Manila is Open File System Infrastructure

Container Orchestrators

Source: https://blog.thecodeteam.com/2017/08/15/container-storage-interface-according-josh/

https://blog.thecodeteam.com/2017/08/15/container-storage-interface-according-josh/

Container Orchestrators
 need infrastructure to run on.

Either you rent it or you buy and
manage it.

CO - Challenge one: Provisioning

Source: https://www.slideshare.net/SeanCohen/storage-101-rook-and-ceph-open-infrastructure-denver-2019

ReadWriteOnce

CO: Challenge 2 - storage consumption

ReadOnlyMany ReadWriteMany

Single Node Multiple Nodes

Container Storage Interface

Unifying interface across Container Orchestrators
- Provides a scope for abstractions and simplifications
- Includes reasonable grounds for extensions and flexibility

A reference architecture on breaking down provisioning and allowing granular
control of attachments.

An integration point for infrastructure provisioners such as Cinder, Manila,
EBS, EFS, Azure Files, etc.

The emphasis is not only “provisioning” storage, but also support advanced
storage orchestration

Manila Container Storage Interface

Why:
- Flexibility: multi-vendor, multi-protocol
- Security: multi-tenancy
- Maturity: day 2 operations

Why not:
- Homogenous storage
- Single tenant deployments

Manila Container Storage Interface

Common scenario:

● In-house OpenStack serves multiple COs run by sub-organizations
● One sub-org has bought dedicated vendor storage with special-sauce features that they like
● Others just want whatever storage is available
● Some of the sub-organizations are trusted tenants so that it makes sense to give them

CephFS native
● Some of the sub-organizations are not trusted in this sense so CephFS storage should be

mediated by an NFS gateway
● Sub organization using storage X wants to archive their data, or make it available to other

applications that don’t mind using storage Y

Manila CSI can handle deployments of this kind
● Storage Classes and Manila Share Types
● Manila data motion APIs

Manila CSI: How we got here

● Manila+K8s dynamic storage provisioner

● CERN presented their work with hybrid external service provider (on master) and CephFS
native CSI driver (on worker nodes)

● Dynamic Storage Provisioning of Manila/CephFS Shares on Kubernetes
○ https://www.openstack.org/summit/berlin-2018/summit-schedule/events/21997/dyna

mic-storage-provisioning-of-manilacephfs-shares-on-kubernetes
○ slides
○ https://github.com/kubernetes/cloud-provider-openstack (master)
○ https://github.com/ceph/ceph-csi (worker)

● Good performance and scale results with k8s 1.12 using CSISkipAttach

https://www.openstack.org/summit/berlin-2018/summit-schedule/events/21997/dynamic-storage-provisioning-of-manilacephfs-shares-on-kubernetes
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/21997/dynamic-storage-provisioning-of-manilacephfs-shares-on-kubernetes
https://www.openstack.org/assets/presentation-media/presentation4.pdf
https://github.com/kubernetes/cloud-provider-openstack

https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22830/se
tting-the-compass-for-manila-rwx-cloud-storage

https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22752/si
g-k8s-working-session

The plan: develop a true multi-protocol Manila CSI driver, integrated into
cloud-provider-openstack:

http://lists.openstack.org/pipermail/openstack-dev/2018-November/136557.html

Manila CSI: How we got here

https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22830/setting-the-compass-for-manila-rwx-cloud-storage
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22830/setting-the-compass-for-manila-rwx-cloud-storage
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22752/sig-k8s-working-session
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22752/sig-k8s-working-session
http://lists.openstack.org/pipermail/openstack-dev/2018-November/136557.html

Manila Container Storage Interface

Manila Container Storage Interface

The way forwards: manilakube integration lab

● K8s cluster -- currently master node and three workers
● Also deploys OpenStack devstack

○ Default devstack is minimal:
■ Manila, keystone, mysql, rabbitmq -- nothing else
■ Manila has native CephFS and CephFS via NFS back ends

● Golang environment, crictl, etc. installed in the environment
● Kubectl all set up both within the cluster and from the staging platform
● Automated install of Ceph CSI and Cloud Provider OpenStack with Manila CSI.
● Sufficient to do end-to-end tests of Manila CSI with native CephFS and NFS
● All implemented via ansible-playbooks that provision the k8s cluster on an

OpenStack cloud

https://github.com/ceph/ceph-csi/
https://github.com/kubernetes/cloud-provider-openstack
https://github.com/kubernetes/cloud-provider-openstack/pull/536

The way forwards: manilakube and rook

● Instead of having devstack deploy CephFS and ganesha, use rook
○ Jeff Layton shows how to do this with minikube here.

● This sets up an external, scalable Ceph Cluster independent of
OpenStack and Manila so that manila can use it as an external storage
appliance just as it would use a proprietary NAS appliance.

● HA for ganesha is achieved via Kubernetes stateful set rather than by e.g.
running a single instance of ganesha under control of
pacemaker-corosync as we do today downstream

● Not having only a single ganesha instance under pacemaker control
enables us to scale out NFS service

https://ceph.com/community/deploying-a-cephnfs-server-cluster-with-rook/

The way forwards: manilakube, rook and kuryr

● Add kuryr to the manilakube mix
● Enhance the manila CephFS driver to run with full

DHSS=True multitenancy support
● Scale out Ganesha servers per-tenant

Ganesha per Tenant running under k8s control

Public OpenStack Service API (External) network

Ceph public network

External
Provider
Network

Router Router

Tenant VMs
 Manila
Share

service

Ceph MON

Ceph MDS Ceph OSD Ceph OSD

Ceph OSD

Controller
Nodes Tenant A Tenant B

Compute Nodes

 Manila API
service

Ceph MGR kubernetes

Summary
● We are working full steam ahead to integrate Manila CSI for K8s from OpenStack
● Next: bring in more CSI features - Snapshots, Volume Extension, Topology
● Exploring running Ceph and Ganesha daemons under k8s control

○ Scale out ganesha services per-tenant
○ Per-tenant networking via kuryr

● Actively investigating: scale-down hyperconverged deployments using minimal
manila w/o the rest of OpenStack

○ Maybe drop keystone (run manila in no-authmode)
○ manila services plus rabbitmq and mysql running under k8s

● Investigating if k8s stateful sets are sufficient for our HA/availability
requirements

○ Ganesha
○ manila-share

THANKS.
Questions?

