
OpenStackoïd:
Collaborative OpenStack Clouds On-Demand
－

http://beyondtheclouds.github.io

http://beyondtheclouds.github.io

2

Adrien Lebre
Prof. IMT Atlantique

STACK Team leader
http://stack.inria.fr

Inria Discovery Chair
http://beyondtheclouds.github.io

Who Are We?

Javier Rojas Balderrama
Inria research engineer

OpenStackoïd developer
https://github.com/BeyondTheClouds/openstackoid/

EnosLib developer
http://enoslib.readthedocs.io

Ronan-Alexandre Cherrueau
Inria research engineer

OpenStackoïd developer
https://github.com/BeyondTheClouds/openstackoid/

EnOS developer
http://enos.readthedocs.io

http://beyondtheclouds.github.io

http://stack.inria.fr
http://beyondtheclouds.github.io
https://github.com/BeyondTheClouds/openstackoid/
http://enos.readthedocs.io
https://github.com/BeyondTheClouds/openstackoid/
http://enos.readthedocs.io
http://beyondtheclouds.github.io

Managing Resources
of an Edge
Infrastructure?
－

3

4

Edge Infra?
A kind of Distributed Cloud

Infrastructure

Properties

● 100s/1000s of locations (i.e., data centers)
● Dozen of servers per data centers
● WAN links (10 to 300 ms RTT)

● Intermittent connectivity
● Network partitioning issues

5

● A National Research and Education Network
○ Internet2/Renater/...

● Red point is a Point of Presence (PoP)
● A PoP contains a micro Data Center

○ Dozen of servers
● WAN links interconnect PoPs

○ 10ms, Paris ↔ Marseille
○ 150ms, Berlin ↔ Denver

● Losing connection may lead to network partitions
(e.g. Marseille Corte in France)

Example of an Edge Infrastructure

6

● A National Research and Education Network
○ Internet2/Renater/...

● Red point is a Point of Presence (PoP)
● A PoP contains a micro Data Center

○ Dozen of servers
● WAN links interconnect PoPs

○ 10ms, Paris ↔ Marseille
○ 150ms, Berlin ↔ Denver

● Losing connection may lead to network partitions
(e.g. Marseille Corte in France)

Example of an Edge Infrastructure

7

Same as in Cloud Computing. Tuned for the Edge .

1. Operate/use a single DC
○ Manage users, flavors, quotas
○ Provision compute, storage, net

2. Operate/use several DCs
○ Cross-DC collaborative provisioning

(intra/inter services)
○ Manage multiple DC simultaneously

3. Robustness w.r.t. network delay & disconnections
○ Access/Manage reachable resources

(full isolation)

Managing Resources of an Edge Infra?

Managing Resources
of an Edge Infra
with OpenStack
－

8

DC
9

Boot of a Debian VM (simplified)
1. Operator requests a boot to nova
2. Nova contacts glance to get Debian
3. Nova boots VM internally

Boot VM scenarios
● in a single DC (1-DC)
● in one DC with an image from another DC (x-DC)
● in multiple DC (*-DC)

● Globally vs. partially connected infa.

Alice

HTTP Request
HTTP Response
Internal Call

glance

nova

1.POST
/servers

2.GET
/image/Debian

3.boot VM

Debian blob

VM UUID

Red Thread: Boot of a VM

Boot VM 1-DC x-DC *-DC

global ?? ?? ??

partial ?? ?? ??

10

One DC hosts the control plane; Other DCs host compute nodes

● Theoretically, manipulating remote compute resources does
 not change the OpenStack behavior

● Practically, a lot of issues/challenges‡ †
○ Impact of latency, throughput, intermittent connectivity, etc.
○ What are the deployment rules for each service (e.g., Cinder)?
○ Deployment/Upgrade of the system

● Several studies (scalability, communication buses, etc.) show
 that it is a viable approach but they are still challenges to tackle
○ StarlingX TC as well as other actors (RedHat, Orange, etc.)

 are investigating those issues

Approach 1: Centralized Management

Boot VM 1-DC x-DC *-DC

global ✓ - -

partial ✗ ✗ ✗➔ Operational, but focuses on specific use-cases

11

Every DC is one OpenStack that collaborates with others (à la peer-to-peer)

Theoretically, should fulfill needs for managing Edge resources infra.
● One control plane per DC

○ A DC is independent of others (partition resiliency)
■ Boot VM in Paris, Marseille, or Corte, till we can connect to

● DCs are collaborative with each other
○ Share resources with others (benefits from natural sharding)

■ Boot VM in Paris with Debian image from Marseille
○ Replicate resources at some locations (preserve from delay/partition)

■ Replicate Debian image in Paris, Marseille and Corte

Practically, a sophisticated solution
● Implementing collaboration is a conundrum
● OpenStack doesn’t provide a general solution

Approach 2: Distributed Management

Boot VM 1-DC x-DC *-DC

global ✓ ✓ ✓

partial ✓ ✓ ✓

DataBase Collaboration
Every DC is an OpenStack; Implement collaboration by making resources
global via the DB (active-active Galera, CockroachDB, …)‡ †

Pro
● Do not need to modify OpenStack code

12

Berlin DC Denver DC

glance

nova

glance

nova

1

2

Alice

Boot VM 1-DC x-DC *-DC

global ✓ ✓, ✗ ✓, ✗

partial ✗ ✗ ✗

3

➔ Resources could not be global (CAP theorem)
➔ Resource has to come with its side eǚects

Issues
● Maintain consistency of all data across all DCs

○ Forbids any writes in case of network partition (partial: ✗)
● DataBase only considers data

○ A resource is made of data and effects
○ Collaboration via DB misses effects (x-DC/*-DC: Keystone ✓,

Neutron ✗, ...)

Service-to-Service Collaboration

Berlin DC

Alice

Denver DC

glance

nova

glance

nova

1.

3.

2.a

2.b

Boot VM 1-DC x-DC *-DC

global ✓ ✓? ✓?

partial ✓? ✓? ✓?

Make the service natively collaborative (K2K‡, Glance to Glance†)

Pro
● Know the features of the service (deal with side effects)
● Efficient/Optimal implementation (optimistically scale at edge)

➔ Collaboration code should be decoupled from vanilla code

Issues
● Tangle sophisticated collaboration code with vanilla code

○ Force core developers to maintain collaboration code, make
new features collaborative

○ Intrusive collaboration is not an option for some services (not
everyone want to do edge/need collaboration)

Broker Collaboration

14

Berlin DC Denver DC

glance

nova

glance

nova3.

nova
broker

glance
broker

Alice

1.

2.a

2.b

Boot VM 1-DC x-DC *-DC

global ✓ ✓ ✗

partial ✗ ✗ ✗

Broker on top orchestrates the collaboration (Tricircle‡, Mixmatch†, ...)

Pro
● Put collaboration code outside of vanilla code (in the broker)
● Enable enhancement of APIs for sharing/replication
● Deal with side effects (inter-service for free, intra in the broker)

➔ Broker should not reimplement API to the risk of
developing a new OpenStack on top of OpenStack

Issues
● Current implementations

○ Rely on a central broken (partial: ✗)
○ Miss mechanism for replication (*-DC: ✗)

● Broker has to be exhaustive with the underlying APIs
○ Lot of code to simply expose APIs at broker level

Distributed
Management with
OpenStackoïd
－

15

OpenStackoïd

16

Berlin DC Denver DC

glance

nova

glance

nova

1.POST
/servers

2.GET
/image/Debian

3.boot VM

Debian blob

VM UUID

Alice

Boot VM in Berlin with
Debian from Denver

A broker based solution without a broker

Alice defines the scope of the request into the CLI. The
scope specifies where the request applies

openstack server create my-vm
--image Debian
--os-scope { nova: Berlin
 , glance: Denver }

Generalization to all APIs
● Don’t have to be exhaustive with the underlying API
● Don’t require a specific code for an API

OpenStackoïd
Scope for 1-DC operations

OS@Berlin$ openstack server create my-vm --image Debian
--os-scope {nova: Berlin, glance: Berlin}

Scope for x-DC operations

OS@Berlin$ openstack server create my-vm --image Debian
--os-scope {nova: Berlin, glance: Denver}

Scope for *-DC operations

OS@Berlin$ openstack server create my-vm --image Debian
--os-scope {nova: Berlin&Denver, glance: Denver}

17

18

*-DC: and ‘&’
Do the operation here and there

● Create a user in Berlin and Denver

 openstack user create Alice
 --password-prompt
 --os-scope {keystone: Berlin&Denver}

● List VMs in Berlin and Denver

 openstack server list
 --os-scope {nova: Berlin&Denver}

Properties

● On-demand partial replication
○ Replication at scope locations
○ Keep consistency 🏆

● Query multiple DCs at once
● Don’t change computation type 🏆

○ List VM & List VM = List VM
○ List a & List a = List a
○ a & a = ???

19

Do the operation here or there

● Boot a VM in Berlin with image from
Denver or Paris

openstack server create my-vm
 --image Debian
 --os-scope { nova: Berlin
 , glance: Denver|Paris }

Properties

● Let the operator implements retries
workflow

No matter if one is down or don’t have
the image, till the other is up and has
the image.

*-DC: or ‘|’

OpenStackoïd
Proof-of-Concept
－

20

21

HAproxy
Berlin

Nova
Berlin

Keystone
Berlin

Glance
Denver

HAproxy
Denver

Glance
Berlin

Keystone
Denver

Nova
Denver

op
en

st
ac

k
se
rv

er
 c

re
at

e
…

sc
op

e:
{k

ey
st
on

e:
 B

er
li

n,

no
va

:
Be

rl
in

,
gl
an

ce
:
De
nv

er
}

Features
Scope stick to operation
● Session from start to end of the operation execution
● Enable concurrent operations with different scopes

Scope at service level (nova, glance, keystone, …)
● High level understanding of OpenStack is enough to define collaborations
● Inter-service collaboration only

Risk of bad collaborations (x-DC)
● Resources unreachability: boot VM in Berlin with local network in Denver; it is not yet

possible to extend network resources across DCs (API limitations, technical issues)
● Local state: verify in keystone of Berlin the glance service token from Denver

22

oïd-client-plugin

oïd-middleware

OpenStackoïd MVP

23

glance

Alice

nova

glance

OSC

nova

keystone

oïd-client-plugin

OSC

oïd-middleware

keystone

Boot VM 1-DC x-DC *-DC

global ✓ ✓ ✓

partial ✓ ✓ ✓

An approach that:
● enables the implementation of operators &, |

(not possible with HAproxy)
● does not modify the code source of current

OpenStack services
● should deal with potential issues:

○ High granularity of some services
○ Distant side effects
○ Exclusion of bad collaborations

Wrap Up
－

24

Takeaway
● Collaboration between Edge should be done on demand (and only if needed)

○ Thousands of independent sites
○ Collaboration between network ASes

● Implement on demand collaboration ideas with other systems
○ OpenStackoïd for OpenStack,
○ *oïd for K8S,
○ new edge application services, etc.

● One problem among many others (zero touch provisioning, etc.)

25

http://beyondtheclouds.github.io

Manage Needs scope

Single DC Manage resources locally
● Berlin
● Denver

1-DC
● {nova:Berlin, glance:Berlin}
● {nova:Denver}

Multiple
DCs

Cross-DC collaboration
● Berlin

Denver

x-DC
● {nova:Berlin,glance:Denver}

Manage resources simultaneously
● Berlin Denver
● Berlin

Denver Paris

*-DC
● {glance:Berlin&Denver}
● {nova:Berlin,

glance:Denver|Paris}

http://github.com/BeyondTheClouds/openstackoid

http://beyondtheclouds.github.io

