
Policy-Driven Fault Management for
NFV Eco System
Akhil Jain (NEC) akhil.jain@india.nec.com
Eric Kao (VMware) ekcs.openstack@gmail..com

April 2019

Definitions

● Network Function (NF):
A functional building block in a network

○ packet inspection, CDNs, virus scanner, ...
● Network Function Virtualization (NFV):

Realizing NFs as virtual appliances
● Virtual Network Function (VNF):

A network function realized as virtual
appliances

Fault Management

● Basic fault recovery is standard
● Complexities beyond the stardard cases:

○ Diversity of fault scenarios
○ Diversity of VNFs
○ Each combination may call for a different

fault management response

Fault Scenarios

● Sequence of fault signals over time
● Isolated vs widespread
● Existing or predicted
● Fault types

○ Hard failure
○ Stability
○ Degraded performance

● Fault domains
○ Networking, Host, Storage, Application, etc

Context

● Current & anticipated loads
● VNF capacity
● Physical infra capacity
● Example considerations:

○ If load << VNF capacity, ignore certain fault prediction
signals

○ If load ~= VNF capacity, preemptively scale-out
■ When physical infra limited, may need to scale-in a less

loaded or less critical VNF to make room

VNF characteristics

● Stateful vs stateless
● Monolithic vs microservices
● Interactions, topology, service function chaining
● SLAs
● Business/user impact

Solution: Policy-driven fault management

● Fine-grained monitoring & alarming
○ Monasca, Prometheus, ...

● Rich Context
○ Infra managers: Nova, Kubernetes, …
○ NFV orchestrator: Tacker, ONAP, ...
○ application-level statistics: load, latency, throughput
○ Arbitrary data sources

● Expressive policy framework
○ Congress

Alarm
Services

Congress
Policy Service

webhook

Contextual
Data

Fault Management
Policies

data

Infra
Managers

Orchestrators

action

action

Congress Architecture

● Data
○ Get data from webhooks and APIs
○ Store data as tables and JSON

● Policy
○ Datalog/SQL rules transform data into decisions

● Action
○ Decisions can trigger API calls

Advantages

● Extensible
○ Arbitrary sources of data as needed by use case

● Expressive
○ Not limited by fixed vocabulary or set of

properties
● Declarative

○ Well understood declarative language for
expressing clear and manageable policies

○ Avoid procedural code

Example: preemptive scale out policy

● Predictive fault signal
● Possible response:

○ Ignore
■ failure occur
■ instances go down
■ load increases
■ autoscaling policy adjusts

● Drawback:
○ Degraded service for a time

Example: preemptive scale out policy

● Estimate service disruption/degradation
● Preemptively scale out as appropriate
● Minimize risk of degraded service

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Instances
affected

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Instances
affected

VNFs
data

VNFs
affected

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Instances
affected

VNFs
data

VNFs
affected

VNFs
load data

predicted
load

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Instances
affected

VNFs
data

VNFs
affected

VNFs
load data

predicted
load

scale out
decisions

Example: preemptive scale out policy

Alarms on
hosts

Instances
data

Instances
affected

instances_affected(instance_id) :-
 hosts_alarmed(alarmed_host),
 nova:servers(server_id=instance_id, host_name=alarmed_host)

Example: preemptive scale out policy

predicted
load

scale out
decisions

scale_out(vnf_id) :-
 predicted_VNF_load(vnf_id, predicted_load),
 predicted_load > 0.9

Demo background

● Demonstrate the interaction between services
○ Setup VNFs with Tacker
○ Configure Congress to receive Monasca webhook
○ Configure Monasca to send webhook
○ Raise Monasca Alarm
○ See result of actions triggered by Congress policy

Summary

● Fault management is complex
○ Diversity of scenarios -> Diversity of response

● Solution
○ Fine-grained monitoring
○ Contextual data
○ Expressive policy

● Congress
○ Pluggable data sources
○ Expressive policy language
○ Triggers API calls

General purpose policy triggers

● Trigger API calls based on policy+data

○ Adv. fault management policies

○ Adv. autoscaling policies

○ Generic integration glue

Feedback welcome!

Mailing lists use [congress] prefix
openstack-discuss@lists.openstack.org

Eric Kao <ekcs.openstack@gmail.com>

mailto:openstack-discuss@lists.openstack.org
mailto:ekcs.openstack@gmail.com

@OpenStack

Q&A
Thank you!

openstack openstack OpenStackFoundation

Akhil Jain <akhil.jain@india.nec.com>

Eric Kao <ekcs.openstack@gmail.com>

mailto:ekcs.openstack@gmail.com

Conceptual policy dataflow

Alarms
Data

Topology

VNFs
Tech Data

Technical
Impact

VNFs Biz
Data

Business
Impact

Fault
Mgmt

Decisions
Fault
Mgmt

Feasibility
& Risks

