
OPENSTACK + KUBERNETES + HYPERCONTAINER
The Container Platform for NFV

ABOUT ME

➤ Harry Zhang
➤ ID: @resouer

➤ Coder, Author, Speaker …

➤ Member of Hyper

➤ Feature Maintainer & Project Manager of Kubernetes
➤ sig-scheduling, sig-node

➤ Also maintain: kubernetes/frakti (hypervisor runtime for k8s)

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/frakti

NFV
Network Functions Virtualization:

why, and how?

TRENDS OF TELECOM OPERATORS

➤ Traditional businesses rarely grow

➤ Non-traditional businesses climb to
8.1% of the whole revenue, even
15%~20% in some operators

➤ The new four business models:
➤ Entertainment & Media

➤ M2M

➤ Cloud computing

➤ IT service

Source: The Gartner Scenario for Communications Service Providers

WHAT’S WRONG?

➤ Pain of telecom network
➤ Specific equipments & devices

➤ Strict protocol

➤ Reliability & performance

➤ High operation cost

Long deploy time cost

Complex operation processes

Multiple hardware devices co-exists

Close ecosystem

New business model requires new network functioning

NFV

➤ Replacing hardware network elements with
➤ software running on COTS computers

➤ that may be hosed in datacenter

Speedup TTM

Save TCO

Encourage innovation

➤ Functionalities should be able to:

➤ locate anywhere most effective or inexpensive

➤ speedily combined, deployed, relocated, and upgraded

USE CASE

➤ Project Clearwater
➤ Open source implementation of IMS (IP Multimedia Subsystem) for NFV deployment

Devices (physical equipments)

NFV

VNF (software)

http://www.projectclearwater.org/

SHIP VNF TO
CLOUD

Physical Equipments ->VNFs -> Cloud

VNF cloud

➤ Wait, what kind of cloud?

➤ Q: VM, or container?

➤ A: 6 dimensions analysis
➤ Service agility

➤ Network performance

➤ Resource footprint & density

➤ Portability & Resilience

➤ Configurability

➤ Security & Isolation

disk image

container image

VNFVNFVNF

VNFVNFVNF

SERVICE AGILITY
➤ Provision VM

➤ hypervisor configuration

➤ guest OS spin-up

➤ align guest OS with VNFs
➤ process mgmt service, startup scripts etc

➤ Provision container
➤ start process in right namespaces and

cgroups

➤ no other overhead

Average Startup Time (Seconds) Over Five Measurements

Data source: Intel white paper

St
ar

t u
p

tim
e

in
 s

ec
on

ds

0

7.5

15

22.5

30

25

0.38

Container KVM

https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjUhJjhp7rTAhXJbVAKHTBkDl4QFgg0MAA&url=https%3A%2F%2Fbuilders.intel.com%2Fdocs%2Fcontainer-and-kvm-virtualization-for-nfv.PDF&usg=AFQjCNHxMd2dRvJ9RqtNIrBSV57eFATgvA

NETWORK PERFORMANCE

➤ Throughput
➤ “the resulting packets/sec that the

VNF is able to push through the
system is stable and similar in all
three runtimes”

Packets per Second That a VNF Can Process in Different Environments

Data source: Intel white paper

M
ill

io
ns

0

7.5

15

22.5

30

direct fwd L2 fwd L3 fwd

Host Container KVM

https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjUhJjhp7rTAhXJbVAKHTBkDl4QFgg0MAA&url=https%3A%2F%2Fbuilders.intel.com%2Fdocs%2Fcontainer-and-kvm-virtualization-for-nfv.PDF&usg=AFQjCNHxMd2dRvJ9RqtNIrBSV57eFATgvA

NETWORK PERFORMANCE

➤ Latency
➤ Direct forwarding

➤ no big difference

➤ VM show unstable

➤ caused by hypervisor time to process regular
interrupts

➤ L2 forwarding
➤ no big difference

➤ container even shows extra latency

➤ extra kernel code execution in cgroups

➤ VM show unstable

➤ cased by same reason above

Data source: Intel white paper

https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjUhJjhp7rTAhXJbVAKHTBkDl4QFgg0MAA&url=https%3A%2F%2Fbuilders.intel.com%2Fdocs%2Fcontainer-and-kvm-virtualization-for-nfv.PDF&usg=AFQjCNHxMd2dRvJ9RqtNIrBSV57eFATgvA

RESOURCE FOOTPRINT & DENSITY

➤ VM
➤ KVM 256MB(without —mem-prealloc)

using about 125MB when booted

➤ Container
➤ only 17MB

➤ amount of code loaded into memory is
significantly less

➤ Deployment density
➤ is limited by incompressible resource

➤ Memory & Disk, while container does not
need disk provision

M
em

or
y f

oo
tp

rin
t

0

35

70

105

140

container KVM 256MB

125

17

PORTABILITY & RESILIENCE
➤ VM disk image

➤ a provisioned disk with full operating system

➤ the final disk image size is often counted by
GB

➤ extra processes for porting VM
➤ hypervisor re-configuration

➤ process mgmt service

➤ Container image
➤ share host kernel = smaller image size

➤ can even be: “app binary size + 2~5MB” for
deploy
➤ docker multi-stage build (NEW FEATURE)

OS Flavor Disk Size Container Image Size

Ubuntu 14.04 > 619MB > 188.3MB

CentOS 7 > 680MB > 229.6MB

Alpine — > 5 MB

Busybox — >2MB

Data source: Intel white paper

https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjUhJjhp7rTAhXJbVAKHTBkDl4QFgg0MAA&url=https%3A%2F%2Fbuilders.intel.com%2Fdocs%2Fcontainer-and-kvm-virtualization-for-nfv.PDF&usg=AFQjCNHxMd2dRvJ9RqtNIrBSV57eFATgvA

CONFIGURABILITY

➤ VM
➤ no obvious method to pass configuration to application

➤ alternative methods:
➤ share folder, port mapping, ENV …

➤ no easy or user friendly tool to help us

➤ Container
➤ user friendly container control tool (dockerd etc)

➤ volume

➤ ENV

➤ …

SECURITY & ISOLATION
➤ VM

➤ hardware level virtualization

➤ independent guest kernel

➤ Container
➤ weak isolation level

➤ share kernel of host machine

➤ reinforcement
➤ Capabilities

➤ libseccomp

➤ SELinux/APPArmor

➤ while non of them can be easily applied

➤ e.g. what CAP is needed/unneeded for a specific container?

No cloud provider allow user to run containers without

 wrapping them inside full blown VM!

“
Cloud Native vs Security?

Hyper
Let's make life easier

HYPERCONTAINER

➤ Secure, while keep Cloud Native
➤ Make container more like VM

➤ Make VM more like container

REVISIT CONTAINER

➤ Container Runtime
➤ The dynamic view and boundary of your running process

➤ Container Image
➤ The static view of your program, data, dependencies,

files and directories

FROM busybox

ADD temp.txt /

VOLUME /data

CMD [“echo hello"]

Read-Write Layer & /data

“echo hello”

read-only layer

/bin /dev /etc /home /lib /
lib64 /media /mnt /opt /proc /
root /run /sbin /sys /tmp /
usr /var /data /temp.txt

/etc/hosts /etc/hostname /etc/resolv.conf

read-write layer

/te
mp.tx

t

jso
n

jso
n

init layer

FROM busybox
ADD temp.txt /
VOLUME /data
CMD [“echo hello"]

e.g. Docker Container

HYPERCONTAINER
➤ Container runtime: hypervisor

➤ RunV

➤https://github.com/hyperhq/runv

➤ The OCI compatible hypervisor based runtime implementation

➤ Control daemon

➤ hyperd: https://github.com/hyperhq/hyperd

➤ Init service (PID=1)
➤hyperstart: https://github.com/hyperhq/hyperstart/

➤ Container image:
➤ Docker image

➤ OCI Image Spec

https://github.com/hyperhq/runv
https://github.com/hyperhq/hyperd
https://github.com/hyperhq/hyperstart/

STRENGTHS
➤ Service agility

➤ startup time: sub-second (e.g. 500~ms)

➤ Network performance

➤ same with VM & container

➤ Resource footprint

➤ small (e.g. 30MB)

➤ Portability & Resilience

➤ use Docker image (i.e. MB)

➤ Configurability

➤ same as Docker

➤ Security & Isolation
➤ hardware virtualization & independent kernel

Want to see a demo?

DEMO

➤ hyperctl run -d ubuntu:trusty sleep 1000
➤ small memory footprint

➤ hyperctl exec -t $POD /bin/bash

➤ fork bomb
➤ Do not test this in Docker (without ulimit set)

➤ unless you want to lose your host machine :)

WHERE TO RUN YOUR VNF?

Container VM HyperContainer

Kernel features No Yes Yes

Startup time 380ms 25s 500ms

Portable Image Small Large Small

Memory footprint Small Large Small

Configurability of app Flexible Complex Flexible

Network Performance Good Good Good

Backward Compatibility No Yes Yes (bring your own kernel)

Security/Isolation Weak Strong Strong

HYPERNETES
the cloud platform for NFV

HYPERNETES

➤ Hypernetes, also known as h8s is:
➤ Kubernetes + HyperContainer

➤ HyperContainer is now an official container runtime in k8s 1.6

➤ integration is achieved thru kubernetes/frakti project

➤ + OpenStack
➤ Multi-tenant network and persistent volumes

➤ standalone Keystone + Neutron + Cinder

1. CONTAINER RUNTIME

POD
➤ Why?

➤ Fix some bad practices:
➤ use supervised manage multi-apps in one container

➤ try to ensure container order by hacky scripts

➤ try to copy files from one container to another

➤ try to connect to peer container across whole
network stack

➤ So Pod is
➤ The group of super-affinity containers

➤ The atomic scheduling unit

➤ The “process group” in container cloud

➤ Also how HyperContainer match to
Kubernetes philosophy

Pod

log app

infra
container

volume

init
container

HYPERCONTAINER IN KUBERNETES

➤ The standard CRI workflow
➤ see: 1.6.0 release note

NODE

Pod foo

container
A

container
B

A B foo

VM foo

A B

2. CreatContainer(A)

3. StartContainert(A)

4. CreatContainer(B)

5. StartContainer(B)

docker runtime hyper runtime

1. RunPodSandbox(foo)

Container Runtime Interface (CRI)

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md#v160

2. MULTI-TENANT NETWORK

MULTI-TENANT NETWORK

➤ Goal:
➤ leveraging tenant-aware Neutron network for Kubernetes

➤ following the k8s network plugin workflow

➤ Non-goal:
➤ break k8s network model

KUBERNETES NETWORK MODEL

➤ Pod reach Pod
➤ all Pods can communicate with all other Pods without NAT

➤ Node reach Pod
➤ all nodes can communicate with all Pods (and vice-versa) without NAT

➤ IP addressing
➤ Pod in cluster can be addressed by its IP

DEFINE NETWORK

➤ Network
➤ a top level API object

➤ Network: Namespace = 1: N

➤ each tenant (created by Keystone) has
its own Network

➤ Network Controller is responsible
for lifecycle of Network object

➤ a control loop to create/delete Neutron
“net” based on API object change

ASSIGN POD TO NETWORK

➤ Pods belonging to the same Network can reach each other directly through IP
➤ a Pod’s network mapping to Neutron “port”

➤ kubelet is responsible for Pod network setup
➤ let’s see how kubelet works

DESIGN OF KUBELET

InitNetworkPlugin

Choose Runtime
docker, rkt, hyper/remote

InitNetworkPlugin

HandlePods
{Add, Update, Remove, Delete, …}

NodeStatus

Network
Status

status
Manager

PLEG

SyncLoop

Pod Update Worker (e.g.ADD)
• generale Pod status
• check volume status (will talk this later)
• use hyper runtime to start containers
• set up Pod network (see next slide)

volume
Manager

PodUpdate

image
Manager

SET UP POD NETWORK

KUBESTACK

A standalone gRPC daemon

1. to “translate” the SetUpPod request to the Neutron network API

2. handling multi-tenant Service proxy

MULTI-TENANT SERVICE

➤ Default iptables-based kube-proxy is not tenant aware
➤ Pods and Nodes are isolated into different networks

➤ Hypernetes uses a build-in ipvs as the Service LB
➤ handle all Services in same namespace

➤ follow OnServiceUpdate and OnEndpointsUpdate workflow

➤ ExternalProvider
➤ a OpenStack LB will be created as Service

➤ e.g. curl 58.215.33.98:8078

3. PERSISTENT VOLUME

PERSISTENT VOLUME IN HYPERNETES

➤ Enhanced Cinder volume plugin

➤ Linux container:

1. query Nova to find node

2. attach Cinder volume to host path

3. bind mount host path to Pod
containers

➤ HyperContainer:
➤ directly attach block devices to Pod

➤ no extra time to query Nova

➤ no need to install full OpenStack

Host

vol

Enhanced
Cinder volume plugin

Pod Pod
mountPath mountPath

attach vol

desired
World

reconcile

Volume
Manager

PV EXAMPLE

➤ Create a Cinder volume

➤ Claim volume by reference its
volumeID

HYPERNETES TOPOLOGY

Node Node
Node

kubestack

Neutron L2 Agent

kube-proxy

kubelet

Enhanced Cinder
Plugin

VNF Pod VNF Pod VNF Pod VNF Pod
Keystone

Neutron

Cinder

Master

Object: Network

Ceph

kube-apiserver

kube-apiserver

kube-apiserver

The next goal of h8s: modular

CNI

specific plugin for block devices

TPR

BACK TO THE REAL-WORLD DEMO

➤ Run Clearwater in Hypernetes

Ellis

= k8s Service

Bono

Homestead Homer Chronos Ralf Astaire

EtcdCassandra

Sprout

= DNS awareness

DEMO

➤ One command to deploy all

➤ All scripts and yamls can be found
here:
➤ https://github.com/hyperhq/

hypernetes

➤ https://github.com/Metaswitch/
clearwater-docker

$ kubectl create -f clearwater-docker/kubernetes/

https://github.com/hyperhq/hypernetes
https://github.com/Metaswitch/clearwater-docker

LESSONS LEARNED

➤ Do not use supervisord to manage
processes
➤ use Pod + initContainer

➤ Do not abuse DNS name
➤ e.g. scscf.sprout is not a valid DNS

name, see PR#441

➤ Liveness & Readiness check are
useful

https://github.com/Metaswitch/clearwater-infrastructure/pull/441

THE END
NEWS: Stackube, a new OpenStack project originated from h8s

