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Topics

 Conceptualizing OpenStack Performance
 Foundation

● Keystone Performance

 OpenStack Nova
● KVM Performance
● Resource Over-commit
● Nova Instance Storage – Boot Times and Snapshots
● Nova Scheduler

 OpenStack Cinder
● Direct storage integration with QEMU
● Glusterfs Performance Enhancements in Havana

 Swift Performance
● Swift and Blocking IO

 What's Next
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Background

 Talk reflects work-in-progress
 Includes results from:

● RHEL-OSP 4 (Havana)
● RHOS 3 (Grizzly)
● RHOS 2 (Folsom)

 Items not included in presentation
● Neutron
● Heat and most provisioning use-cases
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Conceptualizing OpenStack Performance
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High Level Architecture

 Modular architecture

 Designed to easily scale out

 Based on (growing) set of core services
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Control Plane vs Data Plane

Data Plane
● Workloads in steady-state operation 
● Performance dictated by components 
managed by OpenStack

Control Plane
● Create/Delete/Start/Stop/Attach/Detach
● Performance Dictated by OpenStack

Nova

Cinder

Neutron

Glance Swift

H
ea

t
VMs

Instance Storage

Volumes

Networks

Objects & ContainersImages

Lifecycle ops

Lifecycle ops

Lifecycle ops

L
if

ec
yc

le
 o

ps

Control Plane Data Plane

Provisioning Steady State



7

Foundational Elements
●Each service has associated databases
●Extensive use of messaging for integration
●Keystone as common identity service
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Control Plane and Data Plane Technologies
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Control Plans and Data Plane Technologies
Technologies Used in Red Hat's Offering  (RHEL-OSP 4)

Nova

Cinder

Neutron

Glance Swift

H
ea

t
VMs

Instance Storage

Volumes

Networks

Objects & Containers
Images

Lifecycle ops

Lifecycle ops

Lifecycle ops

L
if

ec
yc

le
 o

ps

Control Plane Data Plane

Keystone

Ceilometer

Database

Messaging

Red Hat Identify 
Management

MariaDB, Galera

QPID

OpenStack Havana
Python 2.7

RHEL 6.5 with KVM

XFS, RoC ...

Glusterfs, Ceph, NetApp, 
EMC, SolidFire ...

LinuxBridge, OVS, GRE, 
VXLAN, Nicera, BigSwitch

Cisco Nexus, other switches

OpenStack Havana
Python 2.7

Note: Italics are examples of 
partner technologies



10

Factors influencing control plane performance demands
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Foundational Elements
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Keystone Performance

Keystone findings -  UUID in Folsom
 Chatty consumers: Multiple calls to keystone for new tokens

 Database grows with no cleanup
● As tokens expire they should eventually get removed

● Should help with indexing
● For every 250K rows response times go up 0.1 secs

● Can be addressed via cron job
● keystone-manage token_fl ush

Horizon  Login 3 Tokens

Horizon Image page 2 Tokens

CLI (nova image-list) 2 Tokens
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Keystone
Inefficiencies in CLI due to Python libraries

Inefficiencies in CLI vs curl calls
 nova image-show 

● Executes in 2.639s

 curl -H “ “
● Executes in .555s

 Tracing of CLI shows that python is reading the data one byte at a time
● Known httplib issue in the python standard library

● Next steps for testing are to move to Havana and PKI tokens
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Nova
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Understanding Nova Compute Performance
KVM SPECvirt2010: RHEL 6 KVM Post Industry Leading Results

http://www.spec.org/virt_sc2010/results/

                      Virtualization Layer and HardwareBlue = Disk I/O
Green = Network I/O

Client Hardware

System Under Test (SUT)

Steady-State Performance of 
Nova Compute Nodes Strongly 
Determined by Hypervisor

 For OpenStack this is 
typically KVM

 Good news is RHEL / KVM 
has industry leading 
performance numbers.
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Understanding Nova Compute Performance
Guest Performance

 Expect the similar out of the box performance as RHEL / KVM 
● Added tuned virtual-host to the Nova compute node configuration
● RHOS generates its own XML file to describe the guest

● About the same as virt-manager
● Of course smart storage layout is critical

 Tuning for performance
● Common for OpenStack and standalone KVM

● Big Pages, NUMA, tuned profiles
● Optimizations for standalone KVM not currently integrated into 

OpenStack
● SR-IOV,  process-level node bindings 
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Nova Out of the Box Performance
Comparison with Standalone KVM Results
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Nova Compute
Resource Over-Commit 

Nova default configuration has some aggressive over commit ratios 
 CPU has an over commit of 16

● The scheduler will need multiple suggestions based on the instance 
workload

 Memory over commit is a much lower 1.5
● Again depends on the workload
● Anything memory sensitive falls off the cliff if you need to swap
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Nova Compute
Understanding CPU Over-Commit 
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Nova Compute
Ephemeral Storage

Look at ephemeral storage configuration
 Help determine guidelines for balancing ephemeral storage performance vs 

cost / configuration
● Trade-off between footprint (number of drives) and performance

● Initial cost / configuration, rack space 1U vs 2U, Power / cooling
● How does network based storage perform

● Need to ensure proper network bandwidth

Configuration for tests
 Each instance uses a different image
 Hardware configs:

● Single system disk
● Seven disk internal array
● Fiber channel SSD drives
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Nova Boot Times 
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Impact of storage config on Nova Boot Times
Local RAID and Cinder 
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Nova Compute
Ephemeral Storage Snapshots Performance 
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Impact of Storage Configuration on Snapshots 
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Nova Scheduler – Heterogeneous Memory Configs
Out-of-Box Behavior

 The default Nova scheduler assigns based on free memory
● Not much concern about other system resources (CPU, memory, IO, etc)
● You can change / tune this
● Be aware if you have machines with different configurations
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Cinder
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Cinder QEMU Storage Integration

 RHEL 6.5 and RHEL-OSP 4 (Havana) now includes tight QEMU 
integration with Glusterfs and Ceph clients

 Benefits:
● Direct QEMU integration avoids unnecessary context 

switching
● One client per guest configuration may help alleviate client-side 

performance bottlenecks.

 Integration model
● QEMU includes hooks to dynamically link with storage vendor 

supplied client
● Delivered in a manner than preserved separation of concerns for 

software distribution, updates and support
● OpenStack and Linux, including QEMU, provided by Red Hat
● Storage client libraries provided and supported by respective storage 

vendors
● Libgfapi for Glusterfs (RHS) supported by Red Hat
● Librados for Ceph supported by InkTank
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Glusterfs Support for Cinder in Havana With RHEL 6.5
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Swift



35

Swift Performance – Glusterfs as Pluggable Backend
Tuning Worker Count, Max Clients, Chunk Size
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Wrap Up
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Wrap Up

 OpenStack is a rapidly evolving platform
 Out of the box performance is already pretty good

● Need to focus on infrastructure out of the box 
configuration and performance

 Still just scratching the surface on the testing
● Control plane performance via emulated Vms
● Neutron performance (GRE, VXLAN)
● Ceilometer
● Performance impact of Active-Active foundational 

components (DB, messaging)



38

Questions

?
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