
&
a Quantitative Comparison

Xu Wang
hyper.sh; Kata Containers Architecture Committee

Fupan Li
hyper.sh; Kata Containers Upstream Developer

“All problems in computer science can be solved
by another level of indirection, except of course for
the problem of too many indirections.”

----David Wheeler

Agenda
• Secure Containers, or Linux ABI Oriented Virtualization

• Architecture Comparison

• Benchmarks

• The Future of the Secure Container Projects

What’s Kata Containers

• A container runtime, like runC

• Built w/ virtualization tech, like VM

• Initiated by hyper.sh and Intel®

• Hosted by OpenStack Foundation

• Contributed by Huawei, Google, MSFT, etc.

Kata Containers is Virtualized Container

What’s gVisor
• A container runtime, like runC, too

• A user-space kernel, written in Go

• implements a substantial portion of the Linux

system surface

• Developed in Google and was open-sourced in

mid-2018

gVisor implements Linux by way of Linux.

The Similarity
• OCI compatible container runtime

• Linux ABI for container applications

• Support OCI runtime spec (docker, k8s, zun…)

• Extra isolation layer

• Guest Kernel, or say, Linux* in Linux

• Do not expose system interface of the host to the container apps

• Goals

• Less overhead, better isolation

Container App

BLACK BOX

Host OS

Linux ABI

Linux ABI

O
CI

 In
te

rf
ac

e
H

an
dl

in
g

General Architecture of
Kata Containers and gVisor

Architecture Comparison

Run Kata Containers
• Employ existing VMM (or improved) and standard Linux kernel

• Per-container shims and per-sandbox proxy are stand-alone binaries, or
built-in as library (such as in containerd shim v2 implementation)

• An agent in guest OS based on libcontainer

Kata Agent

VMM (e.g. Qemu)

shim
Kata runtime

Container App

proxy
Container App

virt-serial
or vsock

No proxy when
vscok enabled

Guest Linux Kernel

Host Kernel

runC-like
cmdline

IO-stub process
for container Apps shim

Run gVisor
• All in one binary (runsc + Sentry +Gofer)
• Sentry as a user-space kernel, and per-container process stub
• Gofer for 9p IO

Sentry

runsc

Container
AppSentry Container

App
Gofer

runC-like
cmdline

Gofer

Syscall redirect
Host Kernel

9p

Detailed Architecture – Kata
• Classic hardware-assisted
virtualization

• Provide virtual hardware
interface to Guest

• 2 layers of isolation
• kvm and CPU ring protection

• Many IO optimization ways
• Pass through
• Vhost and vhost-user

Guest Kernel

Drivers

agent App
proc

App
proc

Q
em

u
de

vi
ce
s

kvm vhost

Host Kernel

vhost-user

passthru

Detailed Architecture – gVisor (1)
• 2 layers of isolations

• Minimal kernel and written in Golang
• Safer but the compatibility…

• Ring protection and small set of syscalls
• Avoid access more buggy syscalls

• File operations are proceeded in
separated gofer process

• Syscall interception by ptrace or kvm
• The performance impactions…

Syscall
interception

Host Kernel

seccomp/
namespace

sentryApp proc Gofer

Detailed Architecture – gVisor (2)
• In gVisor-kvm:

• Sentry is both host process and guest
kernel

• Ring0 lower in guest
• Upper in VM
• In Host

• Kvm is for higher syscall interception
performance rather than isolation

• No insolation between different modes
of sentry itself

kvm: Syscall
interception

Host Kernel

seccomp/
namespace

Sentry in
host

App proc

Gofer
Sentry as guest

kernel

Expectations based on the Arch
• Isolation:

• Both include 2 isolation layer – better isolation than runC

• Compatibility:
• Kata should have better compatibility over gVisor

• Performance:
• Both should have little overhead on CPU/Memory
• gVisor should have smaller memory footprint over kata, and may boot faster
• gVisor may have some pain on syscall heavy (include IO heavy) workloads
• Kata may have some IO optimization ways

Benchmarks and Analytics

Benchmarks & Setup
• Functional Tests

• Syscall coverage

• Standard Benchmarks
• Boot time
• Memory footprint
• CPU/Memory Performance
• IO Performance

• Networking Performance

• Real-life cases
• nginx, redis, tensorflow

• gVisor didn’t complete a mysql test, and a jenkins test (pull and build)
failed due to the ‘git clone’ failure

Testing Setup
• Testing Setup

• Most of the Cases: server on packet.net

CPU: 4 Physical Cores @ 2.0 GHz (1 × E3-1578L)

Memory: 32GB DDR4-2400 ECC RAM

Storage: 240 GB of SSD (1 × 240 GB)

Network: 10 Gbps Network (2 × INTEL X710 NIC'S IN TLB)

• Disk IO cases: a more powerful server with additional disks

CPU: 24 Physical Cores @ 2.2 GHz (2 × E5-2650 V4)

Memory: 256 GB of DDR4 ECC RAM (16 × 16 GB)

Storage: 2.8 TB of SSD (6 × 480GB SSD)

• Most of the test containers have 8GB memory if not further noted

• For networking tests, two servers play roles as client and server

Testing

client

container

host

disks

Syscall Coverage & Memory Footprint
• gVisor will call about 70 syscalls

according to the code

• For kata, we collect statistics of
the qemu processes in different
cases
• apt-get: 53
• redis: 35
• nginx: 36

• With busybox (512MB memory)
• We enabled template for Kata

0
10000
20000
30000
40000
50000
60000
70000
80000

kata containers gvisor

Memory Footprint (KB)

single container average of 20

Boot time
• Boot busybox image

• Kata (different configurations), gvisor, runc

1
0

0.5

1

1.5

2

2.5

Boot time (seconds)

cli_dis-factory

cli_en-factory

shimv2_dis-factory

shimv2_en-factory

gvisor

runc

CPU/Memory Performance
• Sysbench CPU and memory test

• Test 5 rounds with sysbench and get the average result

• CPU overhead are very limited for both kata and gVisor
• Random memory write: 2.5% vs 5.5% overhead comparing to host
• Seq memory write: 8% vs 13% overhead comparing to host

10.00048 10.0004 10.00066

0

2

4

6

8

10

12

host kata gvisor

CPU Test (sec), Lower is better

5246.84
4868.7 4561.58

1917.63 1870.29 1815.2

0

1000

2000

3000

4000

5000

6000

host kata gvisor

Memory Write

avg seq write (MB/s) avg rand write (MB/s)

IO performance (1)
• IO tests with FIO, gVisor didn’t complete the test

• Note: The “kata passthru fs” has multi-queue support (in the default kata guest kernel), which is not present in
the host driver

0

5000

10000

15000

20000

25000

30000

128k randread 128k randwrite 4k randread 4k randwrite

Buffer IO (MiB/s)

host fs runC kata passthru(virtio-blk) kata passthru(virtio-scsi) kata 9p

0

200

400

600

800

1000

1200

128k randread 128k randwrite 4k randread 4k randwrite

Direct IO (MiB/s)

host fs runC kata passthru fs

IO Performance (2)
• IO test with dd command

• dd if=/dev/zero of=/test/fio-rand-read bs=4k count=25000000
• dd if=/dev/zero of=/test/fio-rand-read bs=128k count=780000

• Note: pay attention to the cache of 9p
• The DIO on a network FS like 9p only means no guest (client) page cache, but there may exist cache on the host (server)

side

0
100
200
300
400
500
600
700
800

128k 4k

dd test (MB/s)

host fs runC kata passthru fs kata 9p gvisor 9p

Networking Performance
• The networking performance is tested on 10Gb Ethernet

• In default configurations

1
0
1
2
3
4
5
6
7
8
9

10

Network Throughput (Gbps)

host docker container kata gvisor

Real-life case: Nginx
• Apache Bench version 2.3

• ab -n 50000 -c 100 http://10.100.143.131:8080/

• General result

runC Kata* gVisor
Concurrency Level 100 100 100
Time taken for tests 3.455 3.439 161.338 seconds
Complete requests 50000 50000 50000
Failed requests 0 0 0
Total transferred 42250000 42700000 42250000 bytes
HTML transferred 30600000 30600000 30600000 bytes
Requests per second 14473.73 14541.18 309.91 [#/sec] (mean)
Time per request 6.909 6.877 322.677 [ms] (mean)
Time per request 0.069 0.069 3.227 [ms] (mean, across all concurrent requests)
Transfer rate 11943.65 12127.12 255.73 [Kbytes/sec] received

* The www-root of the kata test case is not located on 9pfs

Real-life case: Nginx (Cont)
• Detailed Connection time(ms) and percentage
runc min mean[+/-sd] median max
Connect 0 0 0.3 0 7
Processing 1 7 0.3 7 14
Waiting 1 7 0.3 7 8
Total 3 7 0.4 7 15

kata min mean[+/-sd] median max
Connect 0 0 0.1 0 7
Processing 2 7 1 7 207
Waiting 2 7 1 7 207
Total 3 7 1 7 207

gvisor min mean[+/-sd] median max
Connect 0 0 0.1 0 2
Processing 44 322 119.8 305 836
Waiting 21 322 119.9 304 836
Total 45 322 119.8 305 836

7 7 7 7 7 8 8 8

207
305

355
390

415

485

553

634
674

836

7 7 7 7 7 7 7 7 150

100

200

300

400

500

600

700

800

900

50% 66% 75% 80% 90% 95% 98% 99%
100

%

Percentage of the requests
served within a certain time

(ms)

runC

kata

gvisor

* The www-root of the kata test case is not located on 9pfs

Real-life case: Redis

0

20000

40000

60000

80000

100000

120000

140000

160000

PIN
G_IN

LIN
E

PIN
G_BULK SE

T
GET

IN
CR

LP
USH

RPUSH
LP

OP
RPOP

SA
DD

HSE
T

SP
OP

LP
USH

 (n
eed

ed t
o ben

ch
mark

 LR
ANGE)

LR
ANGE_1

00
 (fi

rst
 100

 el
ements

)

LR
ANGE_3

00
 (fi

rst
 300

 el
ements

)

LR
ANGE_5

00
 (fi

rst
 450

 el
ements

)

LR
ANGE_6

00
 (fi

rst
 600

 el
ements

)

M
SE

T (1
0 k

ey
s)

Redis-benchmark (requests per second)

runC kata gvisor

Real-life case: Tensorflow (CPU)
Note: this is a CPU test (No GPU)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

runc kata gvisor-kvm gvisor-ptrace

CNN benchmarks (images/sec)TensorFlow 1.10
Model resnet50
Dataset imagenet (synthetic)
Mode training
SingleSess False
Batch size 32 global

32 per device
Num batches 100
Num epochs 0
Devices ['/cpu:0']
Data format NHWC
Optimizer sgd

Summary
• Both kata and gVisor

• Small attack interface

• CPU performance identical to host and runC

• On Kata Containers
• Some suggestions: Passthru fs, Factory and/or shimv2, etc.

• Good performance in most cases with proper configuration

• On gVisor
• Fast boot performance and low memory footprint

• Still need improve the compatibility for general usage

• Furthermore tests
• Fine tuned benchmarks, vhost-user/dpdk etc. and NUMA Specific tests, nested virtualization tests
• Different kinds of networking tests
• More real-life cases

The Future of the Projects

Kata Containers
• Kata is on the way more efficient

• The shim v2 shown in the benchmarks is going to be merged
soon

• The nemu will reduce the VMM overhead
• Multiple network improvement is under developing or testing

• And more featureful
• Better GPU and other accelerator support

• Contributions are welcome

gVisor and Similar Projects
• gVisor shows real lightweight secure sandboxing tech
• gVisor need more work on

• More efficient syscall interception and processing
• Better compatibility for more applications

• Another project, linuxd, is based on linux kernel and
doing similar jobs

• Lai, Jiangshan, Containerize Linux Kernel, OpenSource Summit
2018, Vancouver
(https://schd.ws/hosted_files/ossna18/db/Containerize%20Linux%20Kernel.pdf)

https://schd.ws/hosted_files/ossna18/db/Containerize%20Linux%20Kernel.pdf

Q&A
Contributions are Welcome

