@ kata

N/ containers

gVisor

Xu Wang
hyper.sh; Kata Containers Architecture Committee
Fupan Li
hyper.sh; Kata Containers Upstream Developer

m HYPER.SH containers

“All problems in computer science can be solved
by another level of indirection, except of course for
the problem of too many indirections.”

-——-David Wheeler

m HYPER.SH @ katacontainers

e Secure Containers, or Linux ABI Oriented Virtualization

* Architecture Comparison
* Benchmarks

* The Future of the Secure Container Projects

* A container runtime, like runC

* Built w/ virtualization tech, like VM

kata

containers

Kata Containers is Virtualized Container

e A container runtime, like runC, too V
e A user-space kernel, written in Go !;, I S O r

* implements a substantial portion of the Linux

Application ‘

system surface

System calls

- Q'
gVisor \“\6?:0“\

* Developed in Google and was open-sourced in

Limited system calls
——— 9
x© (o
mid-2018 Host Kernel \3\60\0\‘0

Hardware

gVisor implements Linux by way of Linux.

OCl compatible container runtime

Extra isolation layer

Goals

Linux ABI for container applications

Support OCI runtime spec (docker, k8s, zun...)

Guest Kernel, or say, Linux* in Linux

Do not expose system interface of the host to the container apps

Less overhead, better isolation

)
(©]
©
G
[
()
)
=
@)
o

LeT0]
c
©
c
©
u

Container App

Einux ABI

BLACK BOX

Linux ABI

Host OS

<5

Architecture Comparison

<5

* Employ existing VMM (or improved) and standard Linux kernel

* Per-container shims and per-sandbox proxy are stand-alone binaries, or
built-in as library (such as in containerd shim v2 implementation)

* An agent in guest OS based on libcontainer

runC-like |O-stub process
cmdline for container Apps Container App

A

Kata Agent
Container App

No proxy when
vscok enabled

virt-serial Guest Linux Kernel

or vsock
VMM (e.g. Qemu)

Host Kernel

* Allin one binary (runsc + Sentry +Gofer)

e Sentry as a user-space kernel, and per-container process stub

e Gofer for9p 10

runC-like
cmdline
Container
App

Syscall redirect

Host Kernel

e Classic hardware-assisted
virtualization

* Provide virtual hardware
interface to Guest
e 2 layers of isolation
* kvm and CPU ring protection

* Many IO optimization ways
* Pass through
* Vhost and vhost-user

Guest Kernel

Drivers

Qemu devices

kvm

Host Kernel

vhost-user

passthru

e 2 layers of isolations

* Minimal kernel and written in Golang
» Safer but the compatibility...
e Ring protection and small set of syscalls

* Avoid access more buggy syscalls
) _ _ App proc
* File operations are proceeded in

separated gofer process

» Syscall interception by ptrace or kvm
Syscall

* The performance impactions... interception

Host Kernel

seccomp/
namespace

In gVisor-kvm:

Sentry is both host process and guest
kernel

* Ring0 lower in guest

* UpperinVM

* |n Host

Kvm is for higher syscall interception
performance rather than isolation

* No insolation between different modes
of sentry itself

App proc

Sentry as guest
kernel

Sentry in
host

kvm: Syscall
interception

Host Kernel

seccomp/
namespace

* |solation:
e Bothinclude 2 isolation layer — better isolation than runC

e Compatibility:
e Kata should have better compatibility over gVisor

* Performance:
* Both should have little overhead on CPU/Memory
e gVisor should have smaller memory footprint over kata, and may boot faster
e gVisor may have some pain on syscall heavy (include 10 heavy) workloads
e Kata may have some 10 optimization ways

<5

Benchmarks and Analytics

kata-containers cli

Functional Tests

e Syscall coverage

Standard Benchmarks
. Boot time environments
* Memory footprint
* CPU/Memory Performance
container
* |0 Performance benchmarks
* Networking Performance

performance tests

Real-life cases
* nginx, redis, tensorflow

* gVisor didn’t complete a mysql test, and a jenkins test (pull and build)
failed due to the ‘git clone’ failure

real life tests

w/o factory
C wi/tactory
compare with

kata-containers with shimv2

w/o factory

w/ factory

runC
gVisor-kvm
virtual machine (GCE)

bare metal machine (packet)

functional tests

boot performance
memory footprint
cpu overhead
fio tests
networking tests

jenkins

nginx

redis

mysq|

tensorflow h

* Testing Setup

Most of the Cases: server on packet.net

CPU: 4 Physical Cores @ 2.0 GHz (1 x E3-1578L)
Memory: 32GB DDR4-2400 ECC RAM

Storage: 240 GB of SSD (1 x 240 GB)

Network: 10 Gbps Network (2 x INTEL X710 NIC'S IN TLB)

Disk 10 cases: a more powerful server with additional disks

CPU: 24 Physical Cores @ 2.2 GHz (2 x E5-2650 V4)
Memory: 256 GB of DDR4 ECC RAM (16 x 16 GB)
Storage: 2.8 TB of SSD (6 x 480GB SSD)

Most of the test containers have 8GB memory if not further noted

For networking tests, two servers play roles as client and server

Testing
client

container

host

* gVisor will call about 70 syscalls
according to the code

* For kata, we collect statistics of
the gemu processes in different
cases

* apt-get: 53
* redis: 35
* nginx: 36

e With busybox (512MB memory)
* We enabled template for Kata

80000
70000
60000
50000
40000
30000
20000
10000

Memory Footprint (KB)

kata containers

B single container M average of 20

gvisor

<5

* Boot busybox image
» Kata (different configurations), gvisor, runc

Boot time (seconds)

2.5
°
2
M cli_dis-factory
15 M cli_en-factory
[l shimv2_dis-factory
1 * M shimv2_en-factory
E —_=E = M gvisor
0.5 e runc
Q
0

| <5

12
10

o N B O

Sysbench CPU and memory test
* Test 5 rounds with sysbench and get the average result

CPU overhead are very limited for both kata and gVisor
Random memory write: 2.5% vs 5.5% overhead comparing to host
Seq memory write: 8% vs 13% overhead comparing to host

CPU Test (sec), Lower is better Memory Write

10.00048 10.0004 10.00066 6000 5246.84 18687
5000 : 4561.58
4000
3000

917.63 870.29 1815.2
2000
0
host kata gvisor host kata gvisor

M avg seqwrite (MB/s) M avg rand write (MB/s)

<5

* 10 tests with FIO, gVisor didn’t complete the test

* Note: The “kata passthru fs” has multi-queue support (in the default kata guest kernel), which is not present in
the host driver

Buffer 10 (MiB/s) Direct 10 (MiB/s)
30000 1200
25000 1000
20000 800
15000 600
10000 400
| = BBl
0 - [§ [pal = 1 - — 0 II
128k randread 128k randwrite 4k randread 4k randwrite 128k randread 128k randwrite 4k randread 4k randwrite
B host fs BMrunC Okata passthru(virtio-blk) B kata passthru(virtio-scsi) B kata 9p Bhostfs ErunC Bkata passthrufs

<5

IO test with dd command
dd if=/dev/zero of=/test/fio-rand-read bs=4k count=25000000
dd if=/dev/zero of=/test/fio-rand-read bs=128k count=780000

Note: pay attention to the cache of 9p

The DIO on a network FS like 9p only means no guest (client) page cache, but there may exist cache on the host (server)

side

800
700
600
500
400
300
200
100

W host fs

dd test (MB/s)

128k

4k

BrunC [DOkata passthrufs Mkata 90 Mgvisor9p

* The networking performance is tested on 10Gb Ethernet
* In default configurations

Network Throughput (Gbps)

=
o

> i

O P N W b U1 O N 0 O

1

[l host M docker container [l kata I gvisor

e Apache Bench version 2.3
* ab -n 50000 -c 100 http://10.100.143.131:8080/

* General result

- Juc__ata* Vo | | |

Concurrency Level
Time taken for tests
Complete requests
Failed requests
Total transferred
HTML transferred
Requests per second
Time per request
Time per request
Transfer rate

100

3.455
50000

0
42250000
30600000
14473.73
6.909
0.069
11943.65

100

3.439
50000

0
42700000
30600000
14541.18
6.877
0.069
12127.12

100
161.338 seconds
50000
0
42250000 bytes
30600000 bytes
309.91 [#/sec] (mean)
322.677 [ms] (mean)
3.227 [ms] (mean, across all concurrent requests)
255.73 [Kbytes/sec] received

* Detailed Connection time(ms) and percentage

M_M-MHM-

Connect 0 0 0.3 0
Processing 1 7 0.3 7 14
Waiting 1 7 0.3 7 8
Total 3 7 0.4 7 15
EEE_M_MHM-
Connect 0 0.1 0
Processing 2 7 1 7 207
Waiting 2 7 7 207
Total 3 7 7 207
mm_mmz_
Connect 0 0.1

Processing 44 322 119.8 305 836
Waiting 21 322 119.9 304 836

Total 45 322 119.8 305 836

900

800

700

600

500

400

300

200

100

Percentage of the requests
served within a certain time
(ms)

836

207

160000
140000
120000
100000
80000
60000
40000
20000
0

]

\QQ’

Redis-benchmark (requests per second)

X Q))))
L QSZ %VQ Q‘C’ <§2 v%(o & & e & &
Q & & & & o
O N2 N2 N2 N2 A\3
N Q Q Q Q A
& S S S & &
NSNS & &
< & S S &
S Q Q Q Q
& A\ A\ AN\ A\
o° S $ S $
S SRS M S
<
QQQ'E) ve(’) §® @6 v%(’)
QS Ny & Ny &
05
<

B runC Mkata l\gvisor

Note: this is a CPU test (No GPU)

TensorFlow
Model
Dataset
Mode
SingleSess
Batch size

Num batches
Num epochs
Devices

Data format

Optimizer

1.10
resnet50
imagenet (synthetic)
training

False

32 global

32 per device
100

0

['/cpu:0']
NHWC

sgd

1.6

1.2

[N

0.8

0.6

0.4

0.2

runc

CNN benchmarks (images/sec)

kata

gvisor-kvm

gvisor-ptrace

<5

Both kata and gVisor

e Small attack interface

* CPU performance identical to host and runC

On Kata Containers
* Some suggestions: Passthru fs, Factory and/or shimv2, etc.

* Good performance in most cases with proper configuration

On gVisor
* Fast boot performance and low memory footprint

* Still need improve the compatibility for general usage

Furthermore tests
* Fine tuned benchmarks, vhost-user/dpdk etc. and NUMA Specific tests, nested virtualization tests
* Different kinds of networking tests
* More real-life cases

The Future of the Projects

e Kata is on the way more efficient

* The shim v2 shown in the benchmarks is going to be merged
soon

* The nemu will reduce the VMM overhead
* Multiple network improvement is under developing or testing

* And more featureful
* Better GPU and other accelerator support

 Contributions are welcome

<5

» gVisor shows real lightweight secure sandboxing tech

e gVisor need more work on
* More efficient syscall interception and processing
* Better compatibility for more applications

e Another project, linuxd, is based on linux kernel and
doing similar jobs
* Lai, Jiangshan, Containerize Linux Kernel, OpenSource Summit

2018, Vancouver
(https://schd.ws/hosted files/ossnal8/db/Containerize%20Linux%20Kernel.pdf)

<5

https://schd.ws/hosted_files/ossna18/db/Containerize%20Linux%20Kernel.pdf

Q&A

Contributions are Welcome

m HYPER.SH @ katacontainers

