Painless Cache Allocation In
Cloud

Lin Yang, lin.a.yang@intel.com
Sunku Ranganath, sunku.ranganath@intel.com

Malini Bhandaru, malini.k.ohandaru@intel.com

SPEC CPU2006 Bzip2 Performance

Last Level Cache Matters oo o

A

[o)]

[
I

High Variability

B
!

* Cache resource contention introduces jitter
and increased latency

AV]
1

NFV & RT workloads are time sensitive

Bzip2 Slowdown vs. Alone (Factor)
- w
1

o - .] ‘ 1 1)
Varying CPU2006 Workloads (13 instances)

Last-Level Cache Contention Can Lead to Almost 5x

Intel Resource Director Technology (RDT) Performance Variation’
» Hardware based CPU cache control 1€:§:§oh::;;tg:rrl~4n‘|'g) 1?::;‘:0?2;;?3:%
» Allocation per process (VM, application, etc.) CoRe Cont Cone o o o
* Shared and isolated usage models APP | apr BN APP | IYCREEN Ar> B Avp |

Monitoring and LLC partitioning mechanisms provide
isolation and prioritization of VMs or apps B AN B

::aSt_[.. . LaSt-[
EEEEE N - N B o
Software Support: Resctrl fs, PQoS toolset, Resource

JTeseTE e sl o

Technologies Support with Intel Resource Director Technology

1: Source : UC Berkeley (UCB) Tests, 2016, see backup for details @ ; m : m] Hm]ﬁ ; l : : I

Last Level Cache as a Resource —

Total LLC of 30MB on Intel Xeon E5 v3

|-
Hypervisor () Hypervisor
0s e PHY PMDs

6 MB of
isolated DDIO LLC

LLC

DDIO Packet
path

Figure: Traffic flow from NIC to VMs

Throughput Improvement of up to 46% in presence of noisy neighbor’

NFV use case

Scheduling Considerations:

Node capacity of cache
Workload need for DDIO
Workload sensitivity and mix

Isolated vs. Shared allocations

Node level cache manager:
= Crucial to have local agent on the host
= Dynamic cache control

— Millisecond timescales for time
sensitive workloads

1: Source: https://builders.intel.com/docs/networkbuilders/deterministic_network_functions_virtualization_with_Intel_Resource_Director_Technology.pdf

Allocation with Resource Management Daemon (RMD)

Management& Orchestratlon Plane

RMD - A Linux daemon that: Marms (O H.‘——’ Tetemetry
. Runs on |nd|V|dual hosts - I e
« REST API, accessible to orchestrator | NETWOR:(""""""""
. Accepts & enforces policy /pll A
'RMD | Enforcement |- alggﬁ'tcr{m —| Monitoring [~—— collectd

Open Source: https://github.com/intel/rmd e collms s
Hardware Resources
Why use RMD: [CachePool]
. # total 30
* Ability to use LLC as aresource suaranteed = 12
o : : burstable=12 Shared Infrastructure Block
Satisfies multiple usecases with besteffort=3 1
varying resource policies [0SGroup] Group | Guaranteed Block Burstable Block | Best Effort Block
cache =3 Max=Min=0 Max>Min>0 Max=Min=0

[InfraGroup]
cache = 27

i@l 4

Design/Implementation Options

Cache allocation & Static, One Time Configuration Dynamic, Run time updates based on

updates the policy

Hardware Bitmasks = Operator required to understand Hides bitmasks constraints &
bitmasks for complex allocations calculations

Cache Policies No concept of Isolated vs. Shared Supports Isolated & Shared cache
cache policies policies

Hyper-Convergence May not be efficient Out of the box efficient configuration

Short timeframe No Yes

resource control

Low level resource Just at VM Level Process level control

control

RMD is complimentary to Libvirt

OpenStack with RMD

Workload request-X
Placement
Flavor-1 Service
Cache: {Min:0 MeX:

Scheduler
. Nova Cache Inventory
Scale with RMD Conductor Updates

Blueprint: Please provide feedback
https://review.openstack.org/#/c/56

8678/

* Enables secure cache allocation
policies

Flavor-1
Cache: {Min:0 Max:0}

Flavor-2
Cache: {Min:5 Max:10}

* Manage multiple platform
resources like memory bandwidth
Compute

ContrOl US|ng Intel RDT Nodes Bu_rs.table:. BestEffort: {Min:0
{Min:5 Max:10} Max:0}

Figure: Flavor Spec with max_cache:min_cache model

i@l 6

https://review.openstack.org/#/c/568678/

Thank you

