Running OpenStack over a VXLAN Fabric

Andre Pech Arista Networks

Overview

- VXLAN Refresher
- Why VXLAN?
- Network Design Requirements
- Key Decisions Points
- OpenStack over VXLAN designs
- Thoughts on future work

VXLAN Refresher

 Standardized overlay technology for encapsulating layer 2 traffic on top of an IP fabric

Learning and Flooding in VXLAN

- MAC Learning
 - Learn based on traffic received over the tunnel
 - And/or use a protocol to distribute MAC tables
- Handling BUM Traffic
 - BUM = Broadcast, Unknown Unicast, and Multicast traffic
 - Common options for BUM traffic distribution:
 - IP Multicast
 - Head-end replication / replication node

Why VXLAN?

- Addresses 4K VLAN limitation, enabling up to 16M tenant networks
- Solves mac address scaling issues at the core of the network
- Allows for better scalability and failover with an L3 ECMP fabric
- VXLAN support is only required at endpoints, allowing greater vendor flexibility in the network
- Networking ASIC support

Real World Requirements to Deploy OpenStack over VXLAN

- No IP Multicast!
 - IP multicast is an efficient, protocol based mechanism for BUM traffic distribution
 - But no one wants to run multicast in their network
- Hardware VXLAN gateways
 - Get North-South traffic into / out of your cloud
 - Bridge physical infrastructure (storage, non-virtualized servers, etc) into virtual networks
 - The performance and density of software VXLAN gateways is not sufficient

Some Key Design Decisions

- Software vs Hardware VTEPs
- Replication node vs fully distributed head-end replication
- External SDN Controller vs Standalone Neutron

Software vs Hardware VTEPs

- Flexibility of Software vs Performance of Hardware
 - Software VTEPs are limited only by RAM and CPU cycles, but there's an overhead cost of 10-30% per compute node
 - Hardware VTEPs have great density and performance, but are limited to the size of hardware tables
- Network management in a VXLAN environment

Replication Node vs Fully Distributed Head End Replication

- Replication nodes can be purpose-built
 - Flows can be spread across multiple replication nodes
 - But they to be managed and have an HA story
- Head-end replication at each VTEP requires no HA strategy
 - But burdens each VTEP with the cost of replication

External SDN Controller vs Standalone Neutron

- Hard tradeoff to quantify
- Generally comes down to functionality vs cost

OpenStack over VXLAN

- Three designs that fit the real world production requirements:
 - External SDN controller with a mix of Software and Hardware VTEPs
 - Standalone Neutron with all Hardware VTEPs
 - Standalone Neutron with a mix of Software and Hardware VTEPs

External SDN Controller, Software and Hardware VTEPs

External SDN Controller, Software and Hardware VTEPs

- The SDN Controller (for example VMware NSX or PLUMgrid)
 - Manages virtual VTEPs and the VMs behind them
 - Integrates with the hardware VTEPs to configure gateway functionality for end-to-end provisioning driven by Neutron
 - Exchanges VXLAN MAC address table information between the physical and virtual VTEPs for a multicast-less VXLAN

ML2

- First, a quick plug for ML2
- ML2 is a new Neutron plugin in Havana which provides:
 - Separation between the state of tenant networks and how that state is then realized across the network
 - Flexibility in how the virtual and physical network are managed
 - Multi-vendor support via multiple "Mechanism Drivers" managing pieces of the network in parallel
- Talk on ML2 by Bob Kukura and Kyle Mestery on Friday at 11am

Standalone Neutron, All Hardware VTEPs

Standalone Neutron, All Hardware VTEPs

- Take advantage of hardware capabilities, reduce CPU utilization of each compute node
- Limited to 4K tenant networks (still limited by the VLAN space)
 - Though some work and ML2 multi-segment support, you could do rack-specific VLAN allocation and get beyond the 4K tenant network limit

Standalone Neutron, Software and Hardware VTEPs

Thoughts on Future Work

- Standalone Neutron with Software and Hardware VTEPs is hard to achieve today
 - Requires hook to share VXLAN connectivity info between the virtual and physical infrastructure
 - L2 population mechanism driver in ML2 is a step in the right direction
- Need a general model of VXLAN gateway nodes in Neutron
 - Dynamically attach/detach physical infrastructure into tenant networks

Questions?

