
Erlon Cruz Tiago Pasqualini da Silva Dustin Schoebrun

OpenStack with IPv6

Now You Can!



Agenda

● IPv6 Introduction
● IPv4 to IPv6
● State of IPv6 in OpenStack
● IPv6 architecture in OpenStack: A practical example
● Storage Demo: IPv6 without NAT



What is IPv6?

● The next generation of the IP protocol
● Defined in IETF RFC 1883 in 1995, Internet Standard with RFC 8200 in 

2017
● Intended as a replacement for IPv4 but capable of living with it
● What changes with IPv6?

○ Address space
■ IPv4 has a 32 bit address space ~ 4.3 billion addresses

● xxx.xxx.xxx.xxx
● Where xxx is an integer from 0-255

■ IPv6 has a 128 bit address space ~ 3.4 * 1038 addresses
● xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx
● Where xxxx is a hexadecimal value from 0000 to ffff



Advantages of IPv6

● Virtually unlimited real IP addresses
○ No need for NAT

● Huge standard subnet size
○ 264 addresses, which is the square of the entire IPv4 address space

● No need to assign floating IP addresses to instances
● Routers cannot fragment an IPv6 packet
● Prefix Delegation
● Stateless Address Autoconfiguration (SLAAC)



SLAAC

● Allows an IPv6 host to automatically configure itself when 
connected

● Uses Neighbor Discovery Protocol through ICMPv6 router discovery 
messages

● A router on the network will respond to this request with a router 
advertisement packet
○ This packet contains the requirements for address configuration, routes, and 

required autoconfiguration options

● DHCPv6 and static configuration are also options



Prefix Delegation

● In IPv4, home networks and enterprises typically use private 
addresses
○ 192.168.xxx.xxx and 10.xxx.xxx.xxx

● However, IPv6 addresses are globally accessible end-to-end
○ So home networks and enterprises now distribute globally routable addresses
○ It becomes difficult to manually provision such networks at a large scale

● DHCPv6 uses Prefix Delegation to assign an address prefix and will 
automate the configuration and creation of the publicly routable 
addresses on the network.
○ It does so by assigning a subnet to the router, for example a /64 address space.
○ Will advertise the addresses it allows to the hosts on the network, via SLACC or 

DHCPv6



Quagga

● Routing protocol network suite that provides implementation of 
several routing protocols
○ OSPF, RIP, BGP, and others

● GPL licensed
● Allows users to use software-defined networking on their systems
● We will use Quagga to handle the the creation of routes in our 

OpenStack environment.
○ We set up BGP with Quagga
○ BGP = Border Gateway Protocol



IPv6 in OpenStack



What is the state of IPv6 in OpenStack?

● IPv6 features have been worked on since the beginning (Bexar)
● Support was gradually being worked on across projects and releases
● Before Grizzly the configuration process was very obscure
● Icehouse, Juno and Kilo increased adoption



What is the state of IPv6 in OpenStack?

● Nova
○ Diablo: initial grow of OpenStack, low maturity of IPv6
○ Grizzly: support for IPv6 in RPC services
○ Incremental fixes, new features and documentation until today



What is the state of IPv6 in OpenStack?

● Neutron
○ Grizzly: support for IPv6 in RPC services
○ Juno: support for SLAAC
○ Kilo: support for multiple IPv6 prefixes on internal router ports
○ Liberty: improvements on IPv6 HA routers
○ Last releases: bug fixes and small improvements



What is the state of IPv6 in OpenStack?

● Cinder
○ No big changes needed in core
○ Grizzly: support for IPv6 in RPC services
○ Liberty: support for iSER IPv6
○ Last releases: small bug fixes



What is the state of IPv6 support in Manila?

● Pike
○ Initial IPv6 implementation

■ Support for IPv6 access rules and export locations
■ Support for IPv6 in network plugins in neutron
■ No third party vendor support

○ Not thoroughly tested
● Queens

○ Vendors adding support and fixing bugs
○ CI scenario tests added
○ Devstack plugins support



IPv6 Architectures in OpenStack



IPv6 Dev Architecture in OpenStack

● We will show how easy it is to setup a test environment for IPv6 with 
Manila
○ Manila started supporting IPv6 in Queens

● For the following demo, we have used our development lab 
hypervisors and storage devices
○ Baremetal hypervisors running Ubuntu and KVM
○ NetApp ONTAP devices

● Hypervisors are connected to two IPv6 networks: management and 
data

● ONTAP are also connected to the same networks, with IPv6 
interfaces



IPv6 Dev Architecture in OpenStack

● OpenStack runs on VMs hosted on those hypervisors
○ Each VM connects to a bridge on the hypervisor

● We used Devstack for a simple and easy test setup
○ Just for testing purposes, no real scenario

● Each tenant has a router with gateways to private and public 
networks

● BGP is needed on host to route packets to the correct tenant router
○ Manila Devstack script sets up Quagga for BGP



IPv6 Dev Architecture in OpenStack

● No floating IPs are needed
● Hypervisor can access VM via private IP

○ Admin tier: fd12::/16
○ Hypervisor tier: fd12:1::/32
○ Devstack tier: fd12:1:1::/48
○ Public subnet: fd12:1:1:1::/64
○ Private subnet: fd12:1:1:0::/64

● In this same scenario, with IPv4, we would commonly use floating 
IPs



local.conf for Devstack

To setup Devstack for IPv6, the settings needed are:

SUBNETPOOL_PREFIX_V6=fd12:1:1::/48

MANILA_SETUP_IPV6=True

FLOATING_RANGE=172.24.5.0/24

PUBLIC_NETWORK_GATEWAY=172.24.5.1

IP_VERSION=4+6

NEUTRON_CREATE_INITIAL_NETWORKS=False

enable_plugin neutron-dynamic-routing https://git.openstack.org/openstack/neutron-dynamic-routing



IPv6 Dev Architecture in OpenStack



IPv6 Dev Architecture in OpenStack



Dev Environment Demo



IPv6 Production Architecture in OpenStack

● In a production environment, this devstack architecture would need 
changes
○ Mostly network related

● On the dev environment, data packets are being routed on the 
hypervisor
○ In a real production environment, compute nodes would be connected to both 

networks

● OpenStack would be deployed directly on the baremetal nodes
● Most of the OpenStack configurations would remain unchanged



IPv6 Production Architecture in OpenStack



IPv6 Production Architecture in OpenStack



IPv6 and TripleO 

● Configuring TripleO to use IPv6 is incredibly simple
○ Select the TripleO Heat Templates that deploy with IPv6 rather than with IPv4

● Configures the API endpoints and services to use IPv6 to 
communicate
○ Uses IPv6 connection and address pools rather than IPv4 pools


