

Managing and Protecting Persistent Volumes for Kubernetes

Xing Yang, Huawei and Jay Bryant, Lenovo

Bio

Xing Yang

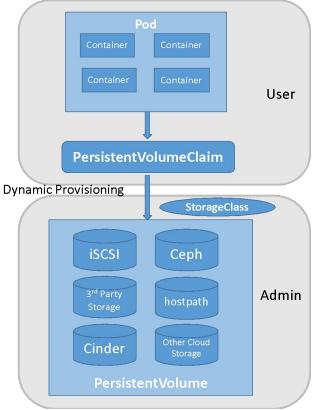
- Principal Architect at Huawei
- Project and Architecture Lead of OpenSDS
- Core Reviewer in Cinder and Manila since Juno
- Contributor in Kubernetes and Container Storage Interface (CSI)
- IRC and Slack: xyang or xyang1
- GitHub: xing-yang
- Email: xingyang105@gmail.com
- Twitter: @2000Xyang

Bio

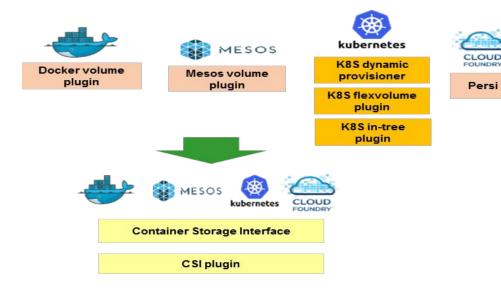
Jay Bryant

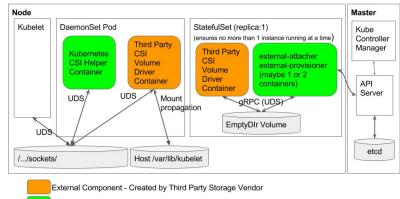
- Cloud Storage Lead at Lenovo
- Core Reviewer in Cinder since Icehouse and current PTL of Cinder
- Stable Maintainer and OSLO and Doc Liaison
- OpenSDS TSC Member
- IRC or Slack: jungleboyj
- GitHub: jsbryant
- Email: jsbryant@electronicjungle.net
- Twitter: @jungleboyj

Agenda


- Kubernetes Persistent Volumes and CSI
- Why Cinder and OpenSDS for Kubernetes?
- Cinder Overview and Cinder stand-alone
- OpenSDS Overview
- Integrate OpenSDS with Cinder
- Provision and Manage Persistent Volumes using OpenSDS and Cinder
- Data Protection for Persistent Volumes
- Disaster Recovery for Persistent Volumes
- Future Integration
- OpenSDS Roadmap for Aruba and Bali Release
- OpenSDS Community
- Demo

Kubernetes Persistent Volumes


- A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator.
- A PersistentVolumeClaim (PVC) is a request for storage by a user through a StorageClass.
- A StorageClass provides a way for administrators to describe the "classes" of storage they offer. Different classes might map to different quality-of-service levels (or "profiles") in other storage systems.
- A StorageClass needs to specify a provisioner for dynamic provisioning.

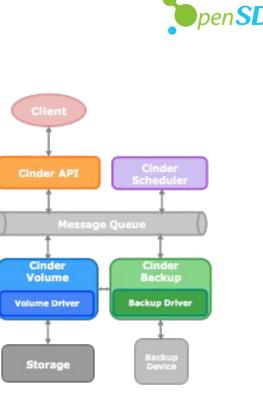


Container Storage Interface (CSI)

CSI is an industry standard defined to enable storage vendors to develop a plugin once and have it work across a number of container orchestration systems.

External Component - Created by Kubernetes Team

Source: https://github.com/kubernetes/community/blob/master/contributors/ design-proposals/storage/container-storage-interface.md


Why Cinder and OpenSDS for Kubernetes

- Storage functionalities in Kubernetes are still evolving.
- Cinder and OpenSDS can provide additional storage functionalities for Kubernetes.
- Provide unified control for traditional cloud and cloud native environment.

Cinder Overview

- Mission statement: To implement services and libraries to provide on demand, self-service access to Block Storage resources. Provide Software Defined Block Storage via abstraction and automation on top of various traditional backend block storage devices.
- 70+ drivers in Cinder currently.

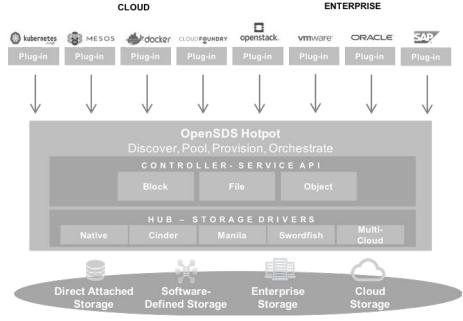
Cinder Stand-alone

- Containerized Cinder services
- Deploys using docker-compose
- Uses noauth option
- Allows Cinder to provide block storage service outside of OpenStack

Cinder Lib

- Cinder Library is a Python library that allows storage drivers to be used outside of Cinder
- Removed DBMS, message broker, Cinder API, scheduler, and volume manager layers
- Currently in Alpha status
- https://github.com/Akrog/cinderlib

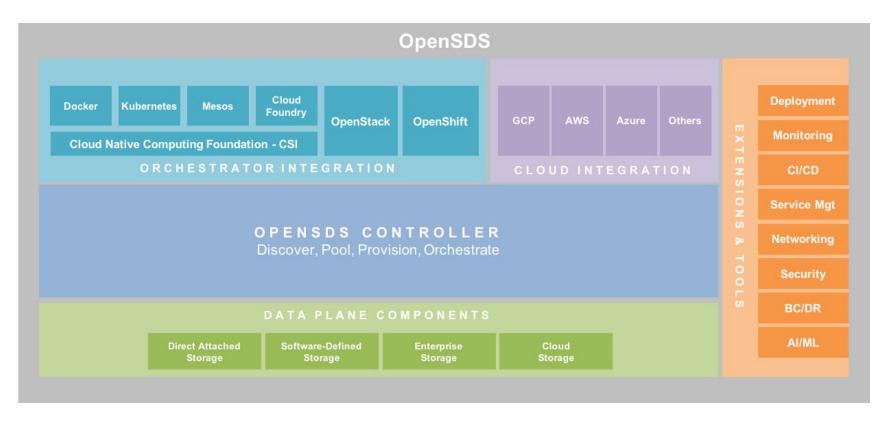
OpenSDS Overview - Core Projects

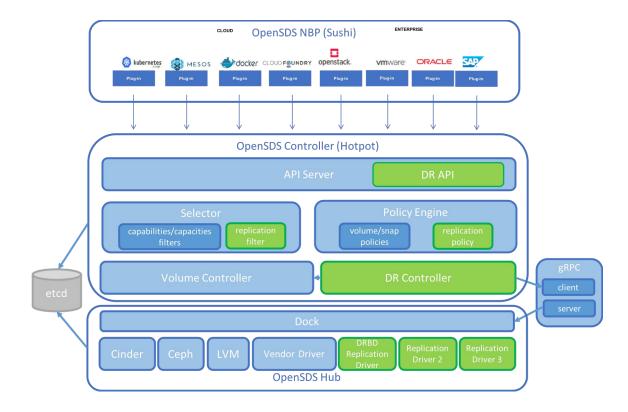

D

SUSHI The Northbound Plug-ins Project

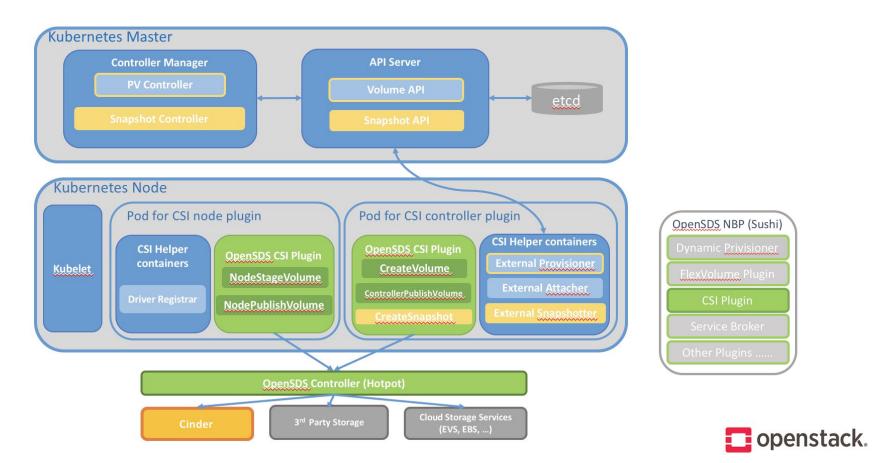
Common plug-ins to enable OpenSDS storage services for cloud and application frameworks

HOTPOT The Storage Controller Project

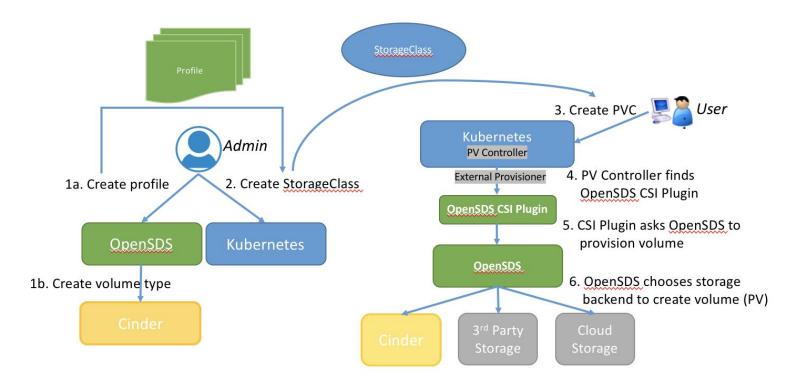

Single control for block, file, and object services across storage on premise and in clouds


OpenSDS Overview - Project Framework

OpenSDS Overview - Architecture


Integrate OpenSDS with Cinder

- OpenSDS uses Cinder to provision storage
 - OpenSDS southbound volume driver for Cinder
 - Cinder in OpenStack deployment, Cinder standalone, or Cinder lib



Provision and Manage Persistent Volumes using OpenSDS and Cinder

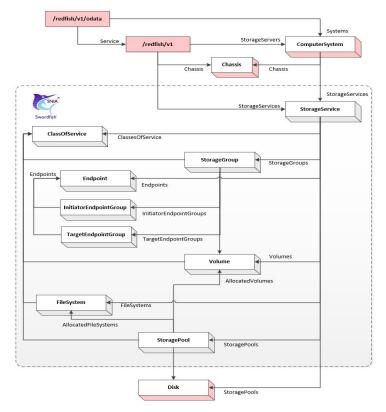
Mapping OpenSDS Profile and Cinder Volume Type to K8S StorageClass

pen SDS

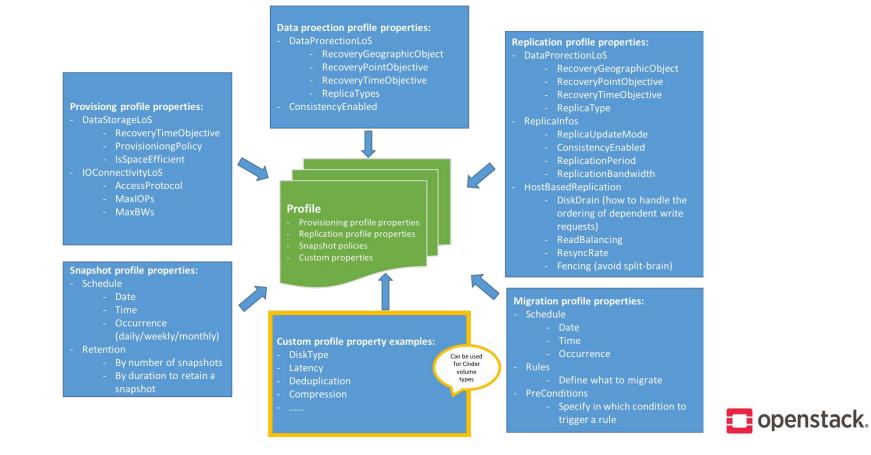
Policy Driven SPDM

.

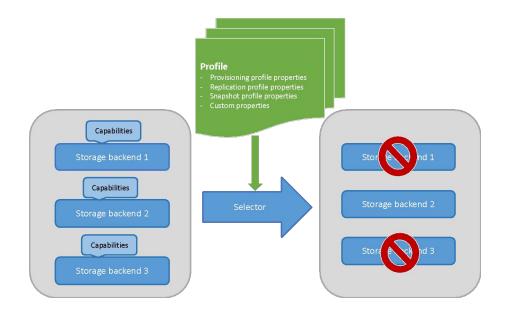
٠



- OpenSDS profile is based on Swordfish specification.
- The SNIA Swordfish[™] specification helps to provide a unified approach for the management of storage and servers in hyperscale and cloud infrastructure environments, supported by multiple storage vendors.
- An extension of the DMTF (Distributed Management Task Force) Redfish specification.
 - Redfish is designed by the DMTF's Scalable Platforms Management Forum (SPMF) to create and publish an open industry standard specification and schema for management of scalable platform hardware. It is a RESTful interface over HTTPS in JSON format based on OData v4.

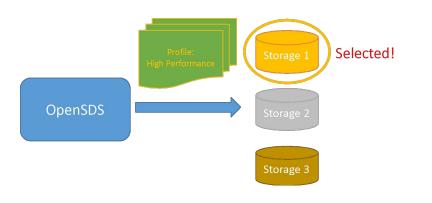


Source: Swordfish_v1.0.5_Specification



Profile Definitions

Mapping Profiles to Capabilities


Profile Example

DATA STORAGE

- DataStorageLoS
 - RecoveryTimeObjective (Immediate, Nearline, Offline, Online)
 - ProvisioningPolicy (thin, thick)
 - IsSpaceEfficient (true, false)

DATA PERFORMANCE

- IOConnectivitLoS
 - AccessProtocol (iSCSI, FC, RBD ...)
 - MaxIOPS
 - MaxBWS

REPLICATION

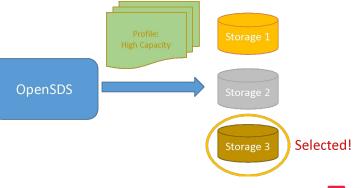
DataProtectionLoS

- RecoveryGeographicObjective
- RecoveryTimeObjective
- RecoveryPointObjective
- ReplicaType
- ReplicaInfos
 - ReplicationUpdateMode
 - ConsistencyEnabled
 - ReplicationPeriod
 - ReplicationBandwidth

SNAPSHOT

Schedule

0


0

0

- o Date
 - Time
 - Occurrence (daily/weekly/monthly)

Retention

- By number of snapshots
- By duration to retain a snapshot

🗖 openstack.

apiVersion: storage.k8s.io/v1 kind: StorageClass metadata:

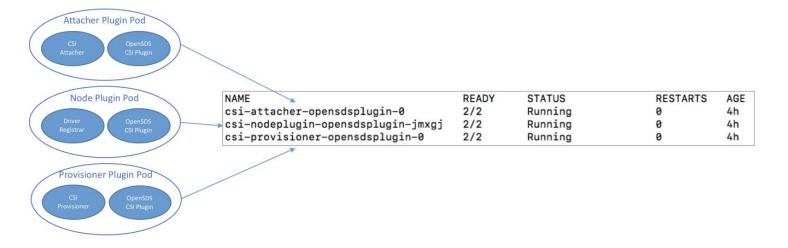
name: opensds-csi-high-performance-sc provisioner: csi-opensdsplugin parameters:

profile: High-Performance

Note: profile parameter can be profile id or name

HighPerformancePVC.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: opensds-csi-high-performance-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: opensds-csi-high-performance-sc



Running OpenSDS CSI Plugin

• Create OpenSDS CSI plugin pods:

kubectl create -f csi/server/deploy/kubernetes

• Three pods can be found by kubectl get pod:

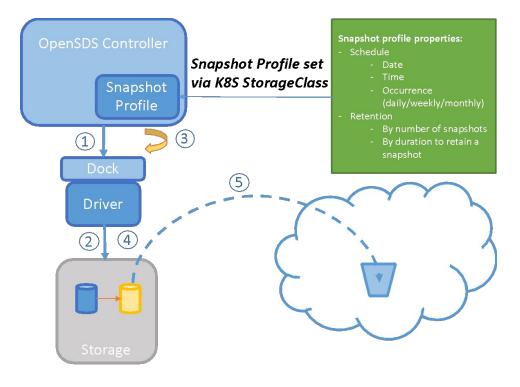
pen SDS

Using OpenSDS Volume

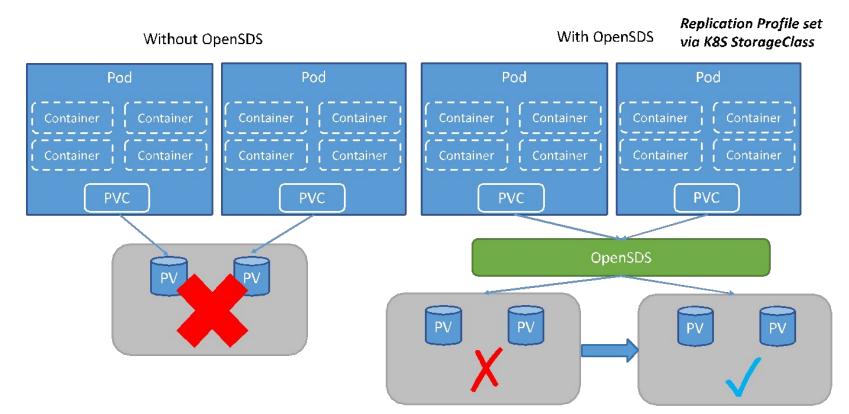
- Create nginx application kubectl create -f csi/server/examples/kubernetes/nginx.yaml
- An OpenSDS volume is mounted at /var/lib/www/html.

docker exec -it <nginx container id> /bin/bash

root@nginx:/# mount | grep html⊥ /dev/sda on /var/lib/www/html type ext4 (rw,relatime,data=ordered)

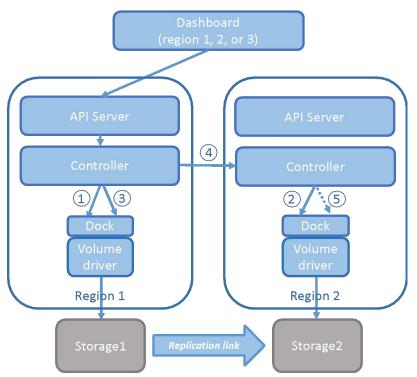

nginx.yaml

Data Protection for Persistent Volumes



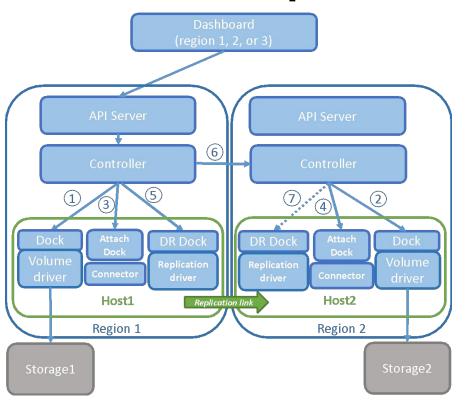
- 1. Controller asks driver to create a volume.
- 2. Driver creates a volume on the storage backend.
- 3. Controller periodically asks driver to create a snapshot based on policies defined in the Snapshot Profile.
- 4. Driver creates a snapshot on the storage backend.
- 5. Driver uploads the snapshot to an object store on premise or in the cloud based on the snapshot profile.

pen<mark>SDS</mark>


Disaster Recovery for Persistent Volumes

penSDS

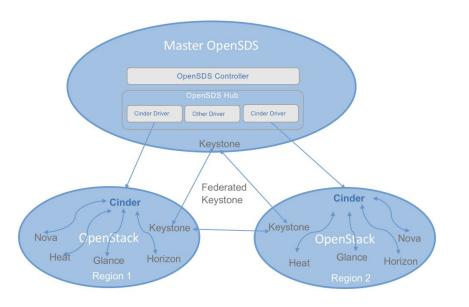
Array-based Replication



- 1. Creates source volume
 - Creates entry in db
 - Creates volume on Storage1.
- 2. Creates target volume
 - Creates entry in db
 - Creates volume on Storage2
- 3. Creates source replication
 - Creates entry in db
 - Creates replication relationship on Storage1 and Storage2
- 4. Controller 1 communicates with controller 2 to create target replication
- 5. Controller 2 creates entry in db

penSDS

Host-based Replication


- 1. Creates source volume
 - Creates entry in db
 - Creates volume on Storage1
- 2. Creates target volume
 - Creates entry in db
 - Creates volume on Storage2
- 3. Attach source volume to Host1
 - Update volume entry in db with host info
- 4. Attach target volume to Host2
 - Update volume entry in db with host info
- 5. Controller 1 Creates source replication
 - Creates entry in db
 - Creates replication relationship on Host1 and Host2 (Host1 is primary)
- 6. Controller 1 communicates with controller 2 to create target replication
- Controller 2 creates entry for target replication in db
 openstack.

Future Integration

- Multi-OpenStack
 - Use Federated
 Keystone or Multi-region
 Keystone
- Multi-Cloud Control

OpenSDS Roadmap v0.14

2017H2 ZEALAND

Storage For Kubernetes

- Kubernetes
 FlexVolume
- Vol CRUD
- Standalone Cinder Integration
- CSI Support
- · Ceph, LVM

2018H1 ARUBA

Storage Orchestration

- OpenStack
- Replication Array-Based, Host-Based
- Dashboard
- Virtual Pools
- Storage Profiles
- NVMeoF preview
- Enumeration
- Block Storage
 - Ceph
 - LVM
 - IBM: XIV, Storwize, SVC
 - Huawei: Dorado

2018H2 BALI Storage Multi-Cloud

- Data Migration
 Offline, Online*
- Monitoring
- Multi-OpenStack
- S3 Object
- Multi-Cloud Control
- NVMeoF
- Storage Groups Snapshots, Replication
- CSI Mesos*. Docker*
- Swordfish
 Dell-EMC, NetApp

2019H1 CAPRI Storage Intelligence

- Analytics
- Lifecycle
- Data Protection
- File Share

2019H2++

- Performance
- Optimization
- Tiering
- Security
- Sharing
- Networking
- SCM

https://github.com/opensds

Governance

Technical Steering Committee

Steven Tan, Chairman Huawei, VP & CTO Cloud Solution

Rakesh Jain, Vice-Chair IBM, Research Engineer and Architect

Allen Samuels Western Digital, R&D Engineering Fellow

Anjaneya "Reddy" Chagam Intel, Chief SDS Architect

Jay Bryant Lenovo, Cloud Storage Lead

End-User Advisory Committee

Cosimo Rossetti Vodafone, Lead Storage Architect

Yusuke Sato Yahoo Japan, Infrastructure Lead

Kei Kusunoki NTT Communications, Storage Architect

Yuji Y Toyo

Yuji Yazawa Toyota ITC, Group Lead

Supporting Organizations

An industry-wide open source project for software-defined storage management

Join Us

- Repos: https://github.com/opensds
- Slack: <u>https://opensds.slack.com</u>
- Mailing list: <u>https://lists.opensds.io</u>
- Weekly meetings:

https://github.com/opensds/design-specs/blob/master/REA

DME.md#opensds-technical-meetings

Demo

 Provision storage using OpenSDS CSI plugin with stand-alone Cinder

Thank You

@opensds_io

