
Managing and Protecting Persistent 
Volumes for Kubernetes

Xing Yang, Huawei and Jay Bryant, Lenovo



Bio
Xing Yang

● Principal Architect at Huawei
● Project and Architecture Lead of OpenSDS
● Core Reviewer in Cinder and Manila since Juno
● Contributor in Kubernetes and Container 

Storage Interface (CSI)
● IRC and Slack: xyang or xyang1
● GitHub: xing-yang
● Email: xingyang105@gmail.com
● Twitter: @2000Xyang

mailto:xingyang105@gmail.com


Bio
Jay Bryant

● Cloud Storage Lead at Lenovo
● Core Reviewer in Cinder since Icehouse and 

current PTL of Cinder
● Stable Maintainer and OSLO and Doc Liaison
● OpenSDS TSC Member
● IRC or Slack: jungleboyj
● GitHub: jsbryant
● Email: jsbryant@electronicjungle.net
● Twitter: @jungleboyj

mailto:jungleboyj@gmail.com


Agenda
• Kubernetes Persistent Volumes and CSI
• Why Cinder and OpenSDS for Kubernetes?
• Cinder Overview and Cinder stand-alone
• OpenSDS Overview
• Integrate OpenSDS with Cinder
• Provision and Manage Persistent Volumes using OpenSDS and Cinder
• Data Protection for Persistent Volumes
• Disaster Recovery for Persistent Volumes
• Future Integration
• OpenSDS Roadmap for Aruba and Bali Release
• OpenSDS Community
• Demo



• A PersistentVolume (PV) is a piece of 
storage in the cluster that has been 
provisioned by an administrator.

• A PersistentVolumeClaim (PVC) is a 
request for storage by a user through a 
StorageClass. 

• A StorageClass provides a way for 
administrators to describe the “classes” of 
storage they offer. Different classes might 
map to different quality-of-service levels 
(or ”profiles”) in other storage systems.

• A StorageClass needs to specify a 
provisioner for dynamic provisioning.

Kubernetes Persistent Volumes



Container Storage Interface (CSI)



Why Cinder and OpenSDS for Kubernetes

● Storage functionalities in Kubernetes are still evolving.
● Cinder and OpenSDS can provide additional storage 

functionalities for Kubernetes.
● Provide unified control for traditional cloud and cloud 

native environment.



Cinder Overview
● Mission statement: To implement 

services and libraries to provide 
on demand, self-service access to 
Block Storage resources. Provide 
Software Defined Block Storage 
via abstraction and automation on 
top of various traditional backend 
block storage devices.

● 70+ drivers in Cinder currently.



Cinder Stand-alone
● Containerized Cinder services
● Deploys using docker-compose
● Uses noauth option
● Allows Cinder to provide block storage service outside of 

OpenStack



Cinder Lib
● Cinder Library is a Python library that allows storage 

drivers to be used outside of Cinder
● Removed DBMS, message broker, Cinder API, scheduler, 

and volume manager layers
● Currently in Alpha status
● https://github.com/Akrog/cinderlib



OpenSDS Overview - Core 
Projects



OpenSDS Overview - Project Framework



OpenSDS Overview - Architecture



Integrate OpenSDS with Cinder
● OpenSDS uses Cinder to provision storage

○ OpenSDS southbound volume driver for Cinder
○ Cinder in OpenStack deployment, Cinder standalone, or Cinder 

lib



Provision and Manage Persistent Volumes using OpenSDS and Cinder



Mapping OpenSDS Profile and Cinder Volume Type to K8S StorageClass



17

•

• ™

•

•

Policy Driven SPDM

Source: Swordfish_v1.0.5_Specification



Profile Definitions



Mapping Profiles to Capabilities



20

Profile Example ●
○
○
○
○

●
o
o
o
o

●
○
○
○

●
o
o

●
○
○
○

●
○ …
○
○



StorageClass with Profile Parameter



• Create OpenSDS CSI plugin pods: 
kubectl create -f csi/server/deploy/kubernetes

• Three pods can be found by kubectl get pod:

Running OpenSDS CSI Plugin



Using OpenSDS Volume
• Create nginx application

kubectl create -f 
csi/server/examples/kubernetes/nginx.yaml

• An OpenSDS volume is mounted at 
/var/lib/www/html.

docker exec -it <nginx container id> /bin/bash



Data Protection for Persistent Volumes



Disaster Recovery for Persistent Volumes



1. Creates source volume
• Creates entry in db
• Creates volume on Storage1.

2. Creates target volume
• Creates entry in db
• Creates volume on Storage2

3. Creates source replication
• Creates entry in db
• Creates replication 

relationship on Storage1 and 
Storage2

4. Controller 1 communicates with 
controller 2 to create target 
replication

5. Controller 2 creates entry in db

Array-based Replication



Host-based Replication
1. Creates source volume

• Creates entry in db
• Creates volume on Storage1

2. Creates target volume
• Creates entry in db
• Creates volume on Storage2

3. Attach source volume to Host1
• Update volume entry in db with host info

4. Attach target volume to Host2
• Update volume entry in db with host info

5. Controller 1 Creates source replication
• Creates entry in db
• Creates replication relationship on Host1 

and Host2 (Host1 is primary)
6. Controller 1 communicates with controller 2 to 

create target replication
7. Controller 2 creates entry for target replication 

in db



• Multi-OpenStack
○ Use Federated 

Keystone or Multi-region 
Keystone

• Multi-Cloud Control

Future Integration



OpenSDS Roadmap v0.14

https://github.com/opensds



Technical Steering Committee End-User Advisory Committee

Governance





•

•

•

•

Join Us

https://github.com/opensds
https://opensds.slack.com/
https://lists.opensds.io/
https://github.com/opensds/design-specs/blob/master/README.md#opensds-technical-meetings
https://github.com/opensds/design-specs/blob/master/README.md#opensds-technical-meetings


DemoDemo
• Provision storage using OpenSDS CSI plugin with 

stand-alone Cinder



Thank You
@opensds_io


