OpenStack Architecture for the Enterprise DEL

Keith Tobin Greg Jacobs Cloud Architect Network Architect

Speaker Profiles

- Keith Tobin
- Dell Cloud Architect
- Located in the Dell Cloud Center of Excellence in Dublin, Ireland
- Over two decades of software, platform and cloud development
- Organizer for OpenStack Ireland
- Loves all things OpenStack and Cloud

Greg Jacobs

- Dell Network Architect
- 20 years working as a network architecture and solutions specialist
- Network evangelist and packet head

Design Goals

- Design an OpenStack architecture to run both enterprise and cloud applications
- Meet enterprise performance expectations for VM's, networking and storage
- Zero downtime on the control layer
- No data loss in the event of a single node failure
- Must be durable, reliable and highly available
- Must automatically recover after a fault situation has been fixed
- Minimize management tasks

Solution Stack

Dél

Deployment With Crowbar

Deploying OpenStack with Crowbar Is Easy

- Crowbar boots and installs from ISO on a management node (server)
- Provides user with web UI for configuration and operations management
- Discovers all potential targets (servers) automatically
- Performs hardware configuration
 - BIOS configuration
 - Performs updates to BIOS and firmware
- Installs OS on targets
- Deploys OpenStack from a set of configuration modules called barclamps

Crowbar Deployment

Crowbar 2 Status

Load Balancer

Active/Passive (Normal)

Services

Active/Passive (Fault)

Single HAProxy Bottleneck

12 OpenStack Architecture for the Enterprise

Neutron (Single Networking Node)

DEL

Neutron (Separate Networking Nodes)

Services

RabbitMQ Cluster (With Mirrored Queues)

Services

MySQL Database

MySQL Single Server (Normal Operation)

D¢LI

MySQL Single Server (Failed)

Application

MySQL Single Server (Failed)

- Disadvantage
 - Single point of failure

Dél

MySQL Active/Passive Failover

MySQL Active/Passive Failover (Fadental Operation)

Disadvantages

- Inactive Server
 - Limits scale
 - Reduces the potential workload processing ability of the solution by half
 - Async replication has potential for data inconsistencies across server nodes in fault situations

MySQL With DRDB

MySQL With DRDB (Normal Operation)

Disadvantages

- Inactive server
 - Limits scale
 - Reduces the potential workload processing ability of the solution by half

MySQL Multi-Master

MySQL Multi-Master Cluster

MySQL Async Replication

• No guarantee that data will be consistent across all nodes at any point in time

MySQL Single Thread replication

DELL

MySQL Multi-Master Cluster

Disadvantages

- At any point in time there is no guarantee that data is in a consistent state within the cluster
- One thread allocated for replication tasks

Services

Percona MySQL Cluster

Percona MySQL Cluster

Capability

Synchronous Replication

Data Consistency

Parallel Applying on All Nodes

Automatic Node Provisioning

Multi-Master

Synchronous Replication

Dél

Data Consistency

At any point in time data is always consistent across all nodes in the cluster

Capability	
Synchronous Replication	×2
Data Consistency	1
Parallel Applying on All Nodes	
Automatic Node Provisioning	
Multi-Master	

Parallel Applying on All Nodes

Capability	
Synchronous Replication	\sim
Data Consistency	\sim
Parallel Applying on All Nodes	×
Automatic Node Provisioning	
Multi-Master	

Automatic Node Provisioning

Multi-Master Cluster

Capability	
Synchronous Replication	\sim
Data Consistency	\sim
Parallel Applying on All Nodes	Ľ
Automatic Node Provisioning	Ľ
Multi-Master	~

Block Storage

DELL

CEPH on R720

DELL

Thank you

Chat with Keith and Greg @ the Dell booth

Keith Tobin Greg Jacobs Cloud Architect Network Architect

43 OpenStack Architecture for the Enterprise

Services