Multiple L3 Backends in
3 cloud

Manjeet Singh Bhatia< >(Intel),
Isaku yamahata< >(Intel)
Takashi Yamamoto< >(Midokura)

OpenStack Summit Vancouver: May 22, 2018

mailto:manjeet.s.bhatia@intel.com
mailto:isaku.yamahata@intel.com
mailto:takashi.yamamoto@midokura.com

Agenda

- Neutron L3 flavors framework

- Why L3 flavors ?

- Use case

- Driver Enabling

- Sample L3 driver for a backend.

- Traffic b/w different backends

- Datapath connectivity among backends (pie in the sky)
- Challenges

- Summary

Neutron L3 flavor framework

L3 Flavor Framework: L3RouterPlugin
AN
- Single L3 Router Plugin with flavor support Callback
- with Neutron callbacks VRN

- Instead of backend specific L3 plugin

- Allows multiple L3 backends
- User specifies flavor which L3 backends to use
- Backends implements L3 flavor driver

- Router instance is associated with flavor=I3 backend

6

OVS DVR flavor
OpenDaylight flavor
Midonet flavor

OVS flavor

Neutron L3 Flavors framework !

ha
.
1
I
I
|
1
I
I
I
|
———

- Source: Neutron L3 Flavors Framework spec
- https://specs.openstack.org/openstack/neutron
-specs/specs/newton/multi-13-backends.html

https://specs.openstack.org/openstack/neutron-specs/specs/newton/multi-l3-backends.html
https://specs.openstack.org/openstack/neutron-specs/specs/newton/multi-l3-backends.html

Neutron L3 Flavors continued

- Neutron Flavors enables multiple L3 backends.

- Driver X can be used for subset of routers and
Driver Y for another set of routers.

- Its similar to ML2 but there's an important
difference.

Use cases

- Multiple backends in a single Neutron
deployment, each has its own logical
network topology, completely

avor X Cavor separated each other
Segment m>8egment . . .
- It would allow incremental migrations

[@ ﬁ from one backend to the other

Neutron server

Another motivation: Simplification

We all love
clean code!

- DB transaction Issue

- L2 plugin has its own db transactions
- L2 plugin, e.g. create_port, shouldn’t be called within a db
transaction of L3 plugin
Implementation consistency and code reduction

- The reference L3 plugin has been refactored to avoid the above
mentioned transaction issues.

It's better for vendors to use the same framework instead of
keeping to improve their own monolithic L3 plugins.

How to use vendor L3 flavor

- Use router as L3 service_plugin
- Specify your flavor as a L3_ROUTER_NAT

service provider
service_plugins = router, xyz,
[service_providers]

service_provider =
L3_ROUTER_NAT:ODL:networking_odl.I3.13_flavor.ODLL3Service

Provider:default

How to use L3 flavor (Cont.)

Prepare a flavor and its profile

1. “openstack network flavor profile create --driver
networking_odl.13.13_flavor.ODLL3ServiceProvider

2. “openstack network flavor create --service-type
L3_ROUTER_NAT odl
3. “openstack network flavor add profile od| <flavorprofileid>

Create a router with the flavor

4. “neutron router-create routerl --flavor odl’

ample L3 flavor driver

import copy
import six

from import
from 3 = b import
from import
from import
from

from import
from .plu import
from import rs as 1
from import 1 gging

from router as b
from 13_router.service providers import b

from ne g nmon import nt
from ne odl.journal import full sync
from di.j import journal

LOG = ng.getLogger(name_)
L3 *networking_odl.13.13_flavor.ODLL3ServiceProvider

L3 RESOURCES =
t.ODL ROUTER: odl const.ODL ROUTERS,
const.ODL FLOATINGIP: odl const.ODL FLOATINGIP

@registry.has_registry_receivers
class ODLL3ServiceProvider(base.L3ServiceProvider):
@log_helpers.log_method_call
def init (13 o plugin)
ServiceProvider, self). _init (13 plugin)
. journal.OpenDaylightJournalThread() elpers.
[EBl(yamahata): add method for fullsync to retrieve
all the router with odl service provider.
other router with other service provider should be filtered. BB (manjec

full_sync.register(plugin_constants.L3, L3 RESOURCES [rgumer

iter updat

_get_kwargs(self, kwargs
return kwargs['context'], kwargsl['router

_validate_13_flavor(self, c xt, rout
if router_id is None:

return False
router 13_obj.Router.get_object(context, id=router_id
flavor_plugin directory.get_plugin(plugin_constants.FLAVOR
flavor flavor_plugin.get_flavor(context, router.flavor_ id)
provider = flavor_plugin.get_flavor_next_provider(

context, flavor['id'])([0]
return str(provider[‘'driver']) L3_PROVIDER

Sample L3 flavor Driver

Traffic between multiple backends:
Pie in the sky

e FEast-west traffic between multiple L3 backends
e API| wise, shared router connected to each L3

network or L2GW?
e |Implementation wise: requires common router or

gateway
! How? l

Opens:

e Any requirements?
e Volunteers?

Traffic between multiple backends

e The simplest solution: Disallow such configurations
o You can still provide connectivities using the other mechanisms.

e Use legacy L3-agent compatible port
o Hopefully many of backends can support it trivially

e Design something distributed
e Piein the sky
e More work for dubious usefulness
e |[t's actually more complicated
e Floating-IP, A network can be backed by multiple
backends, Live migration between backends
(multiple port binding), Hierarchical port binding

Challenges

- There were missing notifications in neutron
(needed a fix)

- Callback execution order was not guaranteed.

- Changes to neutron and neutron-lib.

Future work

e FloatinglP compatibility
o Compatibility between L3 flavor and ML2 mech driver

e More tests. Tempest

e T[enants associated to 13 flavor

o New tenants/user to use new backends
o Existing tenants to use the the existing backend for
migration

Summary

e |3 flavor works and L3 flavor drivers are
coming

Call for action

e test/useit
e Convert your L3 plugin into L3 flavor driver

Reference Code

1. https://review.openstack.ora/#/c/523257/
(Adding callbacks to neutron)

2. https://review.openstack.org/#/c/504182/
(ODL L3 Flavor Driver)

3. https://review.openstack.org/#/c/544116/
(Functional tests)

4. https://review.openstack.org/#/c/483174/
(MidoNet L3 Flavor Driver)

https://review.openstack.org/#/c/523257/
https://review.openstack.org/#/c/504182/
https://review.openstack.org/#/c/544116/
https://review.openstack.org/#/c/483174/

