
© 2013 IBM Corporation

Heat and Enterprise Applications

OpenStack Summit Hong Kong, November 2013

Thomas Spatzier (thomas.spatzier@de.ibm.com)

Cloud & Smarter Infrastructure CTO Office

Lakshminarayanan Renganarayana (lrengan@us.ibm.com)

IBM Research Staff Member

© 2013 IBM Corporation 2

About this session

In this session we want to talk about:

Application orchestration: the deployment of application components, including
their underlying infrastructure, as well as management of applications and their
infrastructure throughout their lifetime

… for enterprise applications: typically larger scale deployments with higher
requirements on scalability, reliability and performance

We want to share experiences from two solutions:

• Application orchestration in IBM SmartCloud® Orchestrator, based on the
OASIS TOSCA standard

• Weaver, a higher level DSL aimed at DevOps scenarios and continuous delivery

We want to explore relationships to OpenStack Heat:

Current functionality, ongoing discussions, potential future directions

© 2013 IBM Corporation 3

Agenda

• Some examples

• Common requirements on software orchestration

• Current solutions … and their use of Heat

• Ongoing activities in the Heat community

© 2013 IBM Corporation 4

Some examples

© 2013 IBM Corporation 5

1..N times

Server 1 Server 2

Apache
Web Server

MySQL

WordPress
Database

Storage
Volume

custom private network

Getting started – WordPress: two-tier WordPress deployment with some infrastructure requirement.
Dedicated software component modeling enables re-use. Abstract network model ensures portability.

HTTP
Endpoint

WordPress
Application

Modeling as dedicated
software components enables
re-use (e.g. other deployment
options, or complete other use
cases).

Keeping the network model abstract and
provider-independent enables portability.

© 2013 IBM Corporation 6

Server 1 Server 2 Server 3

SAP
Central Host

NFS
Share

SAP
Central Instance

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

Storage
Volume

hosted on hosted on hosted on

depends on

depends on

NFS
Client

depends on

NFS
Client

SAP
Dialog Instance

Database
Instance

connects to connects to

connects to

connects to

connects to

1..N times

1

2

3 4 4

6 5 7

TOSCA powered by

Multi-tier SAP application: many software components spread across multiple VMs, with many
dependencies between the components. Processing flow can be derived based on relationship graph.

© 2013 IBM Corporation 7

IBM
HTTP Server 2

IBM
HTTP Server 1

WAS
Deployment

Manager

DB2 2

DB2 1

Storage
Volume

Storage
Volume

Cluster C4

WAS
Cluster Member

C4_M1

WAS
Cluster Member

C4_M1

WAS
Cluster Member

C4_M1

WAS
Cluster Member

C4_M1

Cluster C3

WAS
Cluster Member

C3_M1

WAS
Cluster Member

C3_M1

WAS
Cluster Member

C3_M1

WAS
Cluster Member

C3_M1

Cluster C2

WAS
Cluster Member

C2_M1

WAS
Cluster Member

C2_M1

WAS
Cluster Member

C2_M1

WAS
Cluster Member

C2_M1

Cluster C1

WAS
Cluster Member

C1_M1

WAS
Cluster Member

C1_M1

WAS
Cluster Member

C1_M1

WAS
Cluster Member

C1_M1

IBM collaboration platform: highly scalable application with high requirements on availability. Special
placement policies to support availability and connectivity policies to support performance goals.

anti-collocation
level = rack
max-colloc = 2

anti-collocation
level = machine
max-colloc = 2

max hops = 0

max latency = 5

anti-collocation
level = rack

anti-collocation
level = rack

© 2013 IBM Corporation 8

Common requirements on
software orchestration

© 2013 IBM Corporation 9

Common requirements on software orchestration

• Proper representation of software components in models

• Ability to re-use components in other contexts

• Representation of stateful entities with properties that can be set and observed, and
with a runtime state

• Expression of dependencies between components with well-defined semantics
to derive the proper processing flow

• Handling of multi-instance components: process all in parallel or one by one, apply
special naming

• Ensure portability by defining as little as possible but as much as necessary
about an application’s infrastructure

• The concrete infrastructure can look different in each environment, but an application
pattern should be re-usable across environments

• Ability to express special requirements on placement (“policies”) to meet non-
functional requirements

© 2013 IBM Corporation 10

Beyond initial deployment

• Deployment is only a fraction of enterprise applications’ life time

• Scaling based on infrastructure or application metrics

• Infrastructure metrics: infrastructure drives the application

• Application metrics: application drives the infrastructure

• Scaling, failover and other changes to a deployed topology require proper
handling

• Need ability to hook in automation to update the application layer

• Updates to long running applications must be possible, ideally online

• Complete custom flows based on operations provided by application
components of a deployed application (DB backups, patching, maintenance, …)

• Workflows can run on top of a pattern engine based on a proper interface

© 2013 IBM Corporation 11

Current solutions
… and their use of Heat

© 2013 IBM Corporation 12

Orchestrator

Software orchestration in IBM SmartCloud Orchestrator – Overview

Workflow Orchestration

Automation
Library

Infrastructure Management

Pattern Management

Server

agent

Server

agent

TOSCA

© 2013 IBM Corporation 13

Handling of software defined infrastructure

Automation
Library

Infrastructure Management

Pattern Management

Server

agent

Server

agent
Infrastructure Management layer:

• Requires previous setup of

• Networks and IP groups

• Storage pools

• Allocates resources in scope of
those pools per deployment

• Orchestrates allocation flow of
different resources

Adding flexibility to the
infrastructure layer:

• More dynamic infrastructure
configuration per pattern
deployment

• Extended set of deployment
topologies

• Extended set of resource types

? ?

© 2013 IBM Corporation 14

Prototype use case: Multi-tier SAP CRM training system

• Deployment of multi-
tier SAP CRM systems
for training purposes

• Identical configuration
(incl. SAP system ID) for
each trainee to have
consistent base setup

• SAP systems require
network isolation to
prevent system ID
clashes

• Deploy each SAP system
into its own new
network

© 2013 IBM Corporation 15

Pattern Management

Prototype deployment flow

DI_VM

DI_Disk

CI_VM

CI_Disk

DB_VM

DB_Disk

sap-net

agent agent agent

Automation
Library

DI_VM

DI_Disk

CI_VM

CI_Disk

DB_VM

DB_Disk

sap-net

agent agent agent

HOT

Split overall template into
software and infrastructure …

… pass infrastructure part to
Heat as a HOT template …

… let Heat configure the
complete infrastructure …

… agents take over for
software configuration

© 2013 IBM Corporation 16

Pattern Management

Prototype deployment flow

DI_VM

DI_Disk

CI_VM

CI_Disk

DB_VM

DB_Disk

sap-net

agent agent agent

Automation
Library

DI_VM

DI_Disk

CI_VM

CI_Disk

DB_VM

DB_Disk

sap-net

agent agent agent

HOT

Split overall template into
software and infrastructure …

… pass infrastructure part to
Heat as a HOT template …

… let Heat configure the
complete infrastructure …

… agents take over for
software configuration

20 OpenStack resources!

© 2013 IBM Corporation 17

Observations from prototype

• Heat brings tremendous value add for complex infrastructure setup
• Prototype use case required 10 Heat resources types with various dependencies for which we

would have needed to implement support in our solution

• Quick implementation time through hidden complexity

• Processing offload to Heat

• A relatively simple pattern from user’s perspective results in many infrastructure
resources
• Pattern portability across environments requires some abstraction of infrastructure

• Heat provider templates can be used to map abstracted parts of environment specifics

• Agent bootstrapped as “software configuration provider” to handle software
components
• Possible since we have complete orchestration (dependency handling etc.) in our agent

framework

• With some component orchestration in Heat, this would also be possible for other providers
(Chef, Puppet, scripts …)

© 2013 IBM Corporation 18

Autonomic behavior at different layers …

• Autonomic behavior in two layers causes trouble, or requires proper signaling
(… which can become difficult)

• Scaling actions need proper handling in the application layer (e.g. this can mean more
than just HTTP traffic load balancing)

• Possible solution: put software orchestration layer into driver’s seat
• No auto-scaling used in Heat
• Heat stack update triggered by software orchestration layer

Agent framework
• Monitoring of application level metrics

(transaction time, user sessions, etc.)
• Request infrastructure modification based

on application level thresholds

Heat auto-scaling
• Monitoring of infrastructure metrics
• Infrastructure scaling based on monitored

metrics

© 2013 IBM Corporation 19

App Developer

Application Topology

WAR DDL

SLAs

Infrastructure
Developer

Infrastructure Topology

WAS DB2

Cloud UI

Ops Specialist

Import
(via wizard)

Environment Topology

Automation

Properties

Rules

Application Topology

WAR DDL

IWD Pattern Interface

D W

Continuous Delivery
Workspace**

Weaver – a DSL for Continuous Deployment

Cloud

Continuous
Delivery Pipeline

Build

Publish

Deploy

Test

Pre-Validate

Runtime View Development View

**Versioned in SCM

© 2013 IBM Corporation 20

Rack1

Rack 2

Rack 3

Cloud

VM group with anti-collocation policy: spread across at least 2 racks, no two VMs on the same physical machine
VM group with anti-collocation policy: spread across at least 2 racks

IBM Connections – a social collaboration application used by 400 thousand
IBMers everyday (profiles, blogs, wikis, activities)

© 2013 IBM Corporation 21

IBM Connections – a social collaboration application used by 400 thousand
IBMers everyday (profiles, blogs, wikis, activities)

 Provisioning environments is hard and error prone

• Complex multi tier application made up of Front end load balancers; IBM Websphere (active / passive) ;

IBM DB2 ; Files storage ; email; Single Sign On

• Wiring of compute, network and storage resources, including software, virtual or physical platforms,

network configuration and external services

• Availability, security, performance, and resource utilization are affected by layout on the infrastructure

Agility requirements

• Business criticality driving architectural considerations for HA are a top priority. Risk adverse while

business needs rapidly changing.

• Complex application architecture coupled with deployment operations tribal knowledge slows new

function roll out

• Release to release configurations are difficult to maintain and evolve

• Automation based on scripting techniques does not scale and too fragile, difficult to maintain and evolve

due to implicit dependencies and environmental assumptions

© 2013 IBM Corporation 22

Licensing constraint used by license
optimization component

•Place this VM across at least 2 racks but
no more than ceil(multiplicity/2) on same
rack
•Each VM on a different compute node

Evaluate this expression as late as
possible  on the VM and propagate
the value via an external coordinator

directly leverage / reuse
community recipes and
Chef eco system

Create four nodes in each cluster using
multiplicity 4

Create four clusters using 4.times loop

Example specification using Weaver DSL

topology (:connections_pattern) {

 # create four clusters

 4.times do |i|

 # create a unique WAS cluster id symbol

 node ("was_cluster#{i+1}".to_sym) {

 # on each cluster create 4 nodes

 multiplicity 4

 include '../automation/connections_was_role.weaver’

 connections_was_role.wasadmin_password = config[:wasadmin_password]

 connections_was_role.dmgr_hostname = late_binding { was_dmgr.ip_address }

 redundancy_constraint (:rc) {

 spread_across_at_least({ :rack => 2 })

 all_different :compute_node

 }

 licensed_product(:p1){product_id '5724H88’}

 }

 end

}

© 2013 IBM Corporation 23

Cross component configuration of a distributed software system

WAS

DMgr
IHS WAS Cluster #1-4 DB2

N1 N2 N3 N4

Cluster 1

N1 N2 N3 N4

Cluster 2
N1 N2 N3 N4

Cluster 3

N1 N2 N3 N4

Cluster 4

Create VM
Assign Floating IP

Create Profile
Start Manager

Create Keystore
Config SSL

Create Certificate
Create WAS Plugin

Create Profile
Start Server

Add Node to DMgr
Start HTTP Server

Stop WAS Server Profile
Delete WAS Server Profile

Add Server Definition to DMgr

Create Profile
Start Server

Add Node to DMgr
Stop WAS Server Profile

Delete WAS Server Profile

Create VM
Assign Floating IP

Create VMs
Assign Floating IP

hostname

hostname

Deploy Connections Deploy EARs
(Activities, Blogs, …)

All 16 WAS node names

Post Install

Profile name

hostname

OpenStack

Middleware

Connections

Why it is complicated

• Multiple fine grained configuration tasks

• Config tasks require certain order

• Data dependencies and data values

available only during the deployment

• All buried as tribal knowledge

Weaver approach

• Higher level language – translate tribal

knowledge to formal repeatable knowledge

• Simplification: focus on automating each

granular step, runtime takes care of temporal

dependencies and data passing

N1
N
2

Cluster

© 2013 IBM Corporation 24

OpenStack API

Weaver
Source

File

Weaver DSL Compiler

(Dependence Analysis
& Mapping)

Directly use OpenStack API
to create resources and

use ZooKeeper for
Software Coordination

What we do today

HOT / Heat

Generate HOT template and
use Heat for Software

Config and Coordination

Would like to

Deploying to OpenStack with Weaver

© 2013 IBM Corporation 25

Ongoing activities in Heat community

© 2013 IBM Corporation 26

HOT discussions around software orchestration

• Software orchestration has been one of the HOTtest topics recently in the Heat community and
at the current design summit

• Key goals and design principles
• From inlined user_data scripts to clearly defined software components
 Clean separation of software from infrastructure
 Better re-use of software component definitions
 More flexibility in defining concrete deployment topologies

• No duplication of software configuration technologies (Chef, Puppet, …)
• User friendly template format for majority of use cases

• Two discussions

• Definition of (software) components in

HOT

•Declaration of data flow (component inputs

and outputs)

• Declaration of dependencies between

components (explicit and data flow based)

•…

• In-instance software configuration tool

bootstrapping

•Metadata passing to software

configuration tools

• Signaling (e.g. component completion) and

data passing using existing mechanisms

•…

HOT constructs How to implement

© 2013 IBM Corporation 27

Discussions around policies, placement, …

• Enterprise applications for use in production environments bring in special non-
functional requirements

• Collocation / anti-collocation for failover and performance reasons

• Placement for optimized communication paths

• Placement optimized for license usage

• …

• No Heat/HOT only discussion but requires close interlock with other projects

• Intuitive definition of policies in HOT templates

• Passing of policy metadata to underlying services (e.g. nova, cinder, neutron, …)

• Enforcement of policies through underlying services
(But where to handle cross-cutting aspects?)

© 2013 IBM Corporation 28

Looking forward
to an exciting Icehouse development cycle!

© 2013 IBM Corporation 29

Legal Disclaimer

• © IBM Corporation 2013. All Rights Reserved.
• The information contained in this publication is provided for informational purposes only. While efforts were made to verify the

completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current product plans and strategy, which are subject to change by IBM
without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any
other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement
governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which
IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole
discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any
activities undertaken by you will result in any specific sales, revenue growth or other results.

• OpenStackTM and the OpenStack logo are registered trademarks of the OpenStack Foundation
• Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
• Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service

names may be trademarks or service marks of others.
• IBM SmartCloud® is a trademark of International Business Machines Corporation in the United States, other countries, or both.

© 2013 IBM Corporation 30 © 2013 IBM Corporation 30

