
Glance Image Import is here … 
Now it’s time to start using it

Erno Kuvaja, irc: jokke_
Brian Rosmaita, irc: rosmaita

November 2017



Erno Kuvaja
Senior Software Engineer



Brian Rosmaita
Distinguished Member of the Technical Staff
Verizon Wireless



➡ Replacement for Image Upload
➡ Multiple source options
➡ Enabling operator tasks
➡ Discoverable

➡ Needs configuration
➡ New workflow

What is new Image Import?



Replacement for Image Upload
➡ API changes from 1-2 calls to 2-3 calls

• Image-create works as before, just informs about the new 
workflow with the OpenStack-image-import-methods header

• Providing the data is the optional second call (currently 
required as other options are not yet implemented). ‘glance-
direct’ works as Image upload, does not activate the image 
automatically. PUT the data to staging.

• ‘import’ the new call to activate the Image if needed data is 
provided. May trigger async tasks before image goes active. 
202 does not mean successfully activated image, needs to be 
monitored by caller.



Replacement for Image Upload
➡ Command Line Interface 

• provides all the API calls as separate commands:
• glance image-create
• glance image-stage
• glance image-import

• or can combine them into one create call just like with the 
previous workflow:

• glance image-create-via-import
• Accepts a --file argument or will accept the data 

from stdin
• plus, the discovery call:

• glance import-info



Replacement for Image Upload
➡ Command Line Interface 

• Main difference between import and upload is that the Image 
does not go active right at successful response.

• Monitoring image status going ‘active’ will also be needed 
when working with the CLI.

• glance image-show



Multiple source options
➡ ‘glance-direct’

• Closest to the current image-upload 
• Saves the image data to staging space before processing
• Currently only implemented option



Multiple source options
➡ ‘glance-direct’

• Closest to the current image-upload 
• Saves the image data to staging space before processing
• Currently only implemented option

➡ ‘http-download’
• The long waited ‘copy-from’ from Images API v1
• Does not require user to upload the data directly to Glance
• Implementation timeline Queens release



Multiple source options
➡ ‘swift-local’

• Gives possibility to provide user uploaded images without 
letting them upload the data directly to glance

• Image data is accessed from the swift container provided in 
the ‘import’ call

• Design has been agreed, but the implementation timeline is 
still open



Operator tasks
➡ Provides operators hook to provide their own tasks into the taskflow 

before the image goes active
• Hooks will be implemented in the Queens release
• These tasks can include actions such as automatic image 

conversion, metadata injection for certain groups of users, 
virus checks, etc.

• Tasks are asynchronous so that the client does not need to 
keep the connection to the server while they are executed

• The tasks are not user selectable. They will be executed on 
each image import. Task will have the info from request 
context so it can select different behaviour based on 
conditions (for example, no-op when owner is admin)



Discoverability
➡ New discovery API is included with the Image Import

• ‘/info/import’ endpoint provides details of the capabilities the 
installation provides.

• What import methods are available
• Any image limitations such as container formats, max 

size, etc.
• While this information is available across the API the reasoning 

for the ‘/info/’ endpoint is to provide one-stop shop for all the 
discovering for the deployment

➡ Current implementation is quite limited but will be extended over 
time

➡ Client will be taking advantage of the data provided for decision 
making and advance notification of likely failures.



Configuration
Taking full advantage of the Image Import will need extensive configuration and 
understanding of the needs of the deployment
➡ If ‘glance-direct’ is enabled, shared filesystem between the nodes will be 

required for staging (staging utilizes glance_store library and there are plans 
to support other store types for this such as Ceph)

• Staging should never share path with image-cache or the 
filesystem image store

• Sizing of the staging area is very deployment and usage pattern 
dependant

➡ Tasks will likely require workspace in the node. There should be attention 
paid to decide if this should share the space with staging



Configuration
➡ The ‘enable_image_import’ configuration option is there only to 

provide upgrade path and is already deprecated.
• Pike: False by default, True will enable the EXPERIMENTAL 

Image Import API
• Queens: False by default, True will enable the Image Import 

feature on the CURRENT API
• Rocky: True by default
• S-release: option will be removed



Configuration
➡ The enabled Import methods are an operator configurable option

• Either ‘glance-direct’ or ‘swift-local’ will most likely be part of 
the trademark requirements in the future (deployment needs to 
expose one of the two)

• More than one option can be supported at the same time
• There are no technical reasons to limit the methods to these 

three



Configuration
➡ ‘Http-download’ method will have possibilities to filter allowed URIs

• Whitelisting 
• Blacklisting
• Limited to certain ports only (this will be defaulting to 80 and 

443) to address https://wiki.openstack.org/wiki/OSSN/OSSN-
0078



New workflow
➡ Special attention to tools developers who are consuming the API

• The methods may vary but GET to ‘/info/import’ will always 
provide the available methods on the deployment

• The current Image Upload workflow will likely to be limited for 
admin/service internal use only

• On the positive side, one way to create images will be 
available on the clouds that carry OpenStack Trademark

• The image data may change between upload and download! 
For example if conversion is implemented. The immutability of 
the images still apply for all active images (the content won’t 
change once the image has gone to status ‘active’).



Current challenges
➡ Devstack

• The feature does not currently work on devstack Pike or 
master

• Can be worked around by installing Ocata and upgrading the 
Glance to Pike or master

➡ Only file store currently supported for staging
• There must be shared filesystem (such as NFS) available for 

glance-api nodes
➡ The tasks hooks does not exists yet



@OpenStack

Q&A
Thank you!

openstack openstack OpenStackFoundation


