
Effective Virtual CPU Configuration in Nova

Kashyap Chamarthy <kashyap@redhat.com>

OpenStack Summit
Berlin, 2018

1 / 39



Timeline of recent CPU flaws, 2018 (a)

Jan 03• Spectre v1: Bounds Check Bypass

Jan 03• Spectre v2: Branch Target Injection

Jan 03• Meltdown: Rogue Data Cache Load

May 21• Spectre-NG: Speculative Store
Bypass

Jun 21• TLBleed: Side-channel attack over
shared TLBs

2 / 39



Timeline of recent CPU flaws, 2018 (b)

Jun 29• NetSpectre: Side-channel attack
over local network

Jul 10• Spectre-NG: Bounds Check Bypass
Store

Aug 14• L1TF: “L1 Terminal Fault”

Nov 01• PortSmash: Impacts SMT processors

. . . • ?
3 / 39



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

4 / 39



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

4 / 39



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

4 / 39



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
Nova

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

5 / 39



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
Nova

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

5 / 39



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
Nova

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

5 / 39



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
Nova

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

5 / 39



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
Nova

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

5 / 39



QEMU and KVM
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe Virtio-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

6 / 39



QEMU and KVM
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe Virtio-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

6 / 39



Hardware-based virtualization with KVM

KVM prepares
to enter CPU
‘Guest Mode’

Perform in-kernel
emulation

Emulate
in-kernel?

QEMU issues
ioctl(KVM_RUN)

QEMU emulates
hardware

Execute natively
in ‘Guest Mode’.
(CPU with VMX)

No

Yes

VMENTER

VMEXIT

7 / 39



Part I
Interfaces to configure vCPUs

8 / 39



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

9 / 39



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

9 / 39



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

9 / 39



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use Nova’s default, host-model

10 / 39



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use Nova’s default, host-model

10 / 39

On a guest running with qemu64



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerablespec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use Nova’s default, host-model

10 / 39

Spectre-NG



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use Nova’s default, host-model

10 / 39



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

11 / 39



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt-machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

11 / 39

Default CPU depends on
the machine type



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

11 / 39



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS [...]

12 / 39



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS [...]

12 / 39



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS-cpu IvyBridge-IBRS [...]

12 / 39

Named CPU model



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

13 / 39



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

13 / 39

Named CPU model



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=offvmx=off,pcid=onpcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

13 / 39

Granular CPU flags



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

13 / 39



QEMU’s CPU-related run-time interfaces

Granular details about vCPU models, their capabilities & more:
query-cpu-definitions
query-cpu-model-expansion
query-hotpluggable-cpus
query-cpus-fast; device_{add,del}

 libvirt runs some of these at its daemon start-up time,
and caches the results

14 / 39



Run-time: E.g. probe for CPU model specifics

Executed at libvirtd start-up:
(QMP) query-cpu-definitions

...
"return": [

{ "typename": "Westmere-IBRS-x86_64-cpu",
"unavailable-features": [],
"migration-safe": true,
"static": false,
"name": "Westmere-IBRS" }]

... # Snip other CPU variants

15 / 39



Part II
CPU modes, models and flags

16 / 39



Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:

No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 39



Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest

Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 39



Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 39



Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 39



Host passthrough – when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 39



Host passthrough – when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 39



QEMU’s named CPU models (a)

Virtual CPUs typically model physical CPUs

From a Nova instance’s QEMU log:

[...] qemu-system-x86_64 -cpu Broadwell-IBRS,\
vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’

19 / 39



QEMU’s named CPU models (a)

Virtual CPUs typically model physical CPUs

From a Nova instance’s QEMU log:

[...] qemu-system-x86_64 -cpu Broadwell-IBRS,\
vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’
19 / 39



QEMU’s named CPU models (b)

QEMU is built with a number of pre-defined models:
$ qemu-system-x86_64 -cpu help
Available CPUs:
...
x86 Broadwell-IBRS Intel Core Processor (Broadwell, IBRS)
...
x86 EPYC AMD EPYC Processor
x86 EPYC-IBPB AMD EPYC Processor (with IBPB)
x86 Haswell Intel Core Processor (Haswell)
...
Recognized CPUID flags:
amd-ssbd apic arat arch-capabilities avx avx2 avx512-4fmaps
...

20 / 39



‘host-model’ – a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl)

;
provided—microcode, kernel, QEMU & libvirt are updated!

 Targets for the best of ‘host passthrough’ &
named CPU models; it’s the default of Nova

21 / 39



‘host-model’ – a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated!

 Targets for the best of ‘host passthrough’ &
named CPU models; it’s the default of Nova

21 / 39



‘host-model’ – a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated!

 Targets for the best of ‘host passthrough’ &
named CPU models; it’s the default of Nova

21 / 39



‘host-model’ – example libvirt config

From a Nova guest definition:
<cpu mode=’host-model’>

<feature policy=’require’ name=’vmx’/>
<feature policy=’disable’ name=’pdpe1gb’/>
...

</cpu>

 libvirt will translate it into a suitable CPU model;
based on: /usr/share/libvirt/cpu_map/*.xml

22 / 39



‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest sees the same vCPU model

But: When the guest ‘cold-reboots’, it may pick up
extra CPU features—prevents migrating back to the source host

 Use host-model, if live migration in both directions
is not a requirement

23 / 39



‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest sees the same vCPU model
But: When the guest ‘cold-reboots’, it may pick up
extra CPU features—prevents migrating back to the source host

 Use host-model, if live migration in both directions
is not a requirement

23 / 39



Nova and CPU models

Provides relevant config attributes:
cpu_mode

Can be: custom, host-passthrough, or host-model
cpu_model & cpu_model_extra_flags

Refer to libvirt’s /usr/share/libvirt/cpu_map/*.xml
Or QEMU’s: ‘qemu-system-x86_64 -cpu help’

 Refer to the docs of the above config attributes
https://docs.openstack.org/nova/rocky/configuration/config.html

24 / 39

https://docs.openstack.org/nova/rocky/configuration/config.html


Nova and CPU models – example config

On a Compute node:
$ cat /etc/nova/nova.conf
...
[libvirt]
cpu_mode = custom
cpu_model = IvyBridge-IBRS
cpu_model_extra_flags = ssbd, pdpe1gb
...

25 / 39



Part III
Choosing CPU models & features

26 / 39



Finding compatible CPU models

Data Center (Intel host CPUs)

Haswell Westmere IvyBridge SandyBridge

Nehalem Broadwell Westmere Nehalem-IBRS

27 / 39



Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()

compareHypervisorCPU() and baselineHypervisorCPU()

↖
New in libvirt 4.4.0
TODO: Make Nova use these

28 / 39



Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()
compareHypervisorCPU() and baselineHypervisorCPU()

↖
New in libvirt 4.4.0
TODO: Make Nova use these

28 / 39



Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
29 / 39



Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRSHaswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRSSkylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
29 / 39

Two CPU
models



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

30 / 39



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/><feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/><feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

30 / 39

Intersection between our
Haswell & Skylake variants



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

30 / 39



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

31 / 39



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

31 / 39



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

31 / 39



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)
pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

32 / 39



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pcpc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)(alias of pc-i440fx-3.0)
pc-i440fx-3.0pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)(default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

32 / 39

Traditional



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)
pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)(alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI
32 / 39

Recommended



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Explicitly request Nova to change machine type

The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then it picks up a new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

33 / 39



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Explicitly request Nova to change machine type

The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then it picks up a new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

33 / 39



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Explicitly request Nova to change machine type
The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then it picks up a new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

33 / 39



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Explicitly request Nova to change machine type
The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then it picks up a new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

33 / 39



x86: Updating to patched vCPU models

First, update microcode, host & guest kernels; refer
to—/sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU
Then explicitly tell Nova to update guest CPUs to
their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi

34 / 39

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


x86: Updating to patched vCPU models

First, update microcode, host & guest kernels; refer
to—/sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU

Then explicitly tell Nova to update guest CPUs to
their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi

34 / 39

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


x86: Updating to patched vCPU models

First, update microcode, host & guest kernels; refer
to—/sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU
Then explicitly tell Nova to update guest CPUs to
their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi
34 / 39

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


x86: Important CPU flags

To mitigate guests from multiple Spectre & Meltdown variants:

Intel: ssbd, pcid, spec-ctrl
AMD: virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

Some are built into QEMU’s *-IBRS & *-IBPB CPU models

 Details:
qemu/docs/qemu-cpu-models.texi
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update

35 / 39

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update/


x86: Important CPU flags

To mitigate guests from multiple Spectre & Meltdown variants:

Intel: ssbd, pcid, spec-ctrl
AMD: virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

Some are built into QEMU’s *-IBRS & *-IBPB CPU models

 Details:
qemu/docs/qemu-cpu-models.texi
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update

35 / 39

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update/


‘Expectations’ from applications like Nova?

“QEMU and libvirt took the joint decision to
stop adding new named CPU models when CPU
vulnerabilities are discovered from this point forwards.
Applications / users would be expected to turn on
CPU features explicitly as needed and are considered
broken if they don’t provide this functionality.”

— “CPU model versioning separate from machine type versioning”
From ‘qemu-devel’ & libvirt mailing lists

36 / 39



Summary

Identical host CPUs? Go with “host passthrough”

With mixed host CPUs: if host-model doesn’t suit,
work out a custom ‘baseline’ model
Evaluate workloads before changing machine types
Systematically update all relevant host & guest
components—only then update guest CPU models+flags

37 / 39



References

CPU model configuration for QEMU/KVM x86 hosts, by Daniel Berrangé
https://www.berrange.com/posts/2018/06/29/cpu-model-configuration-for-qemu-kvm-on-x86-hosts

Mitigating Spectre and Meltdown (and L1TF), by David Woodhouse
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/

Exploiting modern microarchitectures—Meltdown, Spectre, and other
hardware attacks, by Jon Masters
https://archive.fosdem.org/2018/schedule/event/closing_keynote

KVM and CPU feature enablement, by Eduardo Habkost
https://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf

38 / 39

https://www.berrange.com/posts/2018/06/29/cpu-model-configuration-for-qemu-kvm-on-x86-hosts
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/
https://archive.fosdem.org/2018/schedule/event/closing_keynote
https://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf


Questions?
E-mail: kashyap@redhat.com
IRC: kashyap – Freenode & OFTC

39 / 39


	Interfaces to configure vCPUs
	CPU modes, models and flags
	Choosing CPU models & features

