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Agenda

● Brief introductions: Ceph, Manila
● Mapping Manila concepts to CephFS
● Experience implementing native driver
● How to use the driver
● Future work: VSOCK, NFS



  

Introductions



  

CephFS

● Distributed POSIX filesystem:
– Data and metadata stored in RADOS
– Cluster of Metadata servers

● Shipped with upstream Ceph releases
● Clients: fuse, kernel, libcephfs
● Featureful: directory snapshots, recursive 

statistics
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Learn more about CephFS

CephFS in Jewel: Stable at Last
– Gregory Farnum
– Thursday 11:00 AM
– Level 4 MR 12 A/B (i.e. here)

http://docs.ceph.com/docs/master/cephfs/

https://www.youtube.com/results?search_query=cephfs 



  

Manila

● OpenStack shared filesystem service
● APIs for tenants to request filesystem 

shares, fulfilled by driver modules
● Existing drivers mainly for proprietary 

storage devices, with a couple of 
exceptions:
– GlusterFS
– “Generic” (NFS-on-Cinder)



  

Manila

Manila API

Driver A

Tenant admin

Driver B

Storage cluster/controller

Guest VM

1. Create share

2. Create share

3. Return address

4. Pass address

5. Mount



  

Why integrate CephFS and 
Manila?

● Most OpenStack clusters already include 
a Ceph cluster (used for RBD, RGW)

● An open source backend for your open 
source cloud

● Testers and developers need a real-life 
Manila backend that is free

● Enable filesystem-using applications to 
move into OpenStack/Ceph clouds



  

Manila concepts and CephFS



  

Shares

● Manila operates on “shares”
– An individual filesystem namespace
– Is both a unit of storage and a unit of sharing
– Expected to be of limited size

● No such concept in CephFS, but we do 
have the primitives to build it.



  

Implementing shares

● In the CephFS driver, a share is:
– A directory
– ...which might have a layout pointing to a 

particular pool or RADOS namespace
– ...which has a quota set to define the size
– ...access to which is limited by “path=...” 

constraints in MDS authentication capabilities 
(“auth caps”).



  

Prerequisites in CephFS

● New: path= auth rules

● New: Prevent clients modifying pool 
layouts (“rwp” auth caps)

● New: quota as df
● New: remote “session evict”, with filtering 

(kicking sessions for a share/ID)
● Existing: quotas, rstats, snapshots



  

Implementing shares
/
volumes
  my_share/

[client.alice]
 caps: [mds] allow rw path=/volumes/my_share
 caps: [osd] allow rw namespace=fsvolumens_my_share

getfattr ­n ceph.quota.maxbytes /volumes/my_share
# file: volumes/my_share
ceph.quota.max_bytes="104857600"

ceph­fuse –name client.alice
–client_mountpoint=/volumes/my_share
/mnt/my_share

Directory

Auth cap

Quota

Mount 
command



  

Access rules

● Manila expects each share to have a list 
of access rules.  Giving one endpoint 
access to two shares means listing it in 
the rules of both shares.

● Ceph stores a list of cephx identities, 
each identity has a list of paths it can 
access.

● i.e. the opposite way around...



  

Implementing access rules

● In initial driver these are directly updated in 
ceph auth caps

● Not sufficient:
– Need to count how many shares require access 

to an OSD pool
– Since Mitaka, Manila requires efficient listing of 

rules by share

● Point release of driver will add a simple index 
of access information.



  

CephFSVolumeClient

● We do most of the work in our new 
python interface to Ceph

● Present a “volume” abstraction that just 
happens to match Manila's needs closely

● Initially very lightweight, becoming more 
substantial to store more metadata to 
support edge-cases like update_access()

● Version 0 of interface in Ceph Jewel



  

CephFSVolumeClient

Manila

CephFS Driver

CephFSVolumeClient

librados libcephfs

Ceph Cluster

Network

github.com/openstack/manila

github.com/ceph/ceph



  

Lessons from implementing a 
Manila driver



  

Manila driver interface

● Not a stable interface:
– Continuously modified to enable Manila 

feature work
– Driver authors expected to keep up

● Limited documentation
● Drivers can't define their own protocols, 

have to make modifications outside of 
driver



  

Adding a protocol

● Awkward: Manila has expectation of drivers 
implementing existing protocols (NFS, CIFS), 
typical for proprietary filers.

● Open source filesystems typically have their 
own protocol (CephFS, GlusterFS, Lustre, 
GFS2)

● To add protocol, it is necessary to modify 
Manila API server, and Manila client, and 
handle API microversioning.



  

Tutorial: Using the CephFS 
driver



  

Caveats

● Manila >= Mitaka required
● CephFS >= Jewel required
● Guests need IP connectivity to Ceph 

cluster: think about security
● Guests need the CephFS client installed
● Rely on CephFS client to respect quota



  

Set up CephFS

ceph-deploy mds create myserver

ceph osd pool create fs_data

ceph osd pool create fs_metadata

ceph fs new myfs fs_metadata fs_data



  

Configuring Manila (1/2)

● Create client.manila identity
– Huge command line, see docs!

● Install librados & libcephfs python 
packages on your manila-share server

● Ensure your Manila server has connection 
to Ceph public network

● Test: run ceph –name=client.manila status



  

Configuring Manila (2/2)

● Dump the client.manila key into 
/etc/ceph/ceph-client.manila.keyring

● Configure CephFS driver backend:

/etc/manila/manila.conf:
    [cephfs1]
    driver_handles_share_servers = False
    share_backend_name = CEPHFS1
    share_driver = manila.share.drivers.cephfs. \
             cephfs_native.CephFSNativeDriver
    cephfs_conf_path = /etc/ceph/ceph.conf
    cephfs_auth_id = manila

$ manila type­create cephfstype false



  

Creating and mounting a share

From your OpenStack console:

$ manila type­create cephfstype false
$ manila create ­­share­type cephfstype \
               ­­name cephshare1 cephfs 1
$ manila access­allow cephshare1 cephx alice

From your guest VM:

# ceph­fuse –id=alice
    ­c ./client.conf –keyring=./alice.keyring
    ­­client­mountpoint=/volumes/share­4c55ad20
    /mnt/share

Currently have to fetch key with Ceph CLI



  

Multiple backends

● Use multiple Manila backends to target 
different storage:
– Different data pools
– Different MDSs (experimental multi-fs in 

Jewel)
– Different Ceph clusters

● Could pull some of this into single driver 
instance but not clear if needed



  

Future work



  

NFS gateways

● Manila driver instantiates service VMs 
containing Ceph client and NFS server

● Service VM has network interfaces on 
share network (NFS to clients) and Ceph 
public network.

● Implementation not trivial:
– Clustered/HA NFS servers
– Keep service VMs alive/replace on failure



  

NFS gateways

Guest

NFS VM NFS VM

Ceph public net

Share network

MON OSD MDS

Mount -t nfs 12.34.56.78:/

NFS over TCP/IP

CephFS protocol



  

Hypervisor-mediated

● Terminate CephFS on hypervisor host, expose 
to guest locally

● Guest no longer needs any auth or addr info: 
connect to the hypervisor and it'll get there

● Requires compute (Nova) to be aware of 
attachment to push NFS config to the right 
hypervisor at the right time.

● Huge benefit for simplicity and security



  

Hypervisor-mediated

Guest

Hypervisor

Ceph public net

MON OSD MDS

NFS over VSOCK

Mount -t nfs 2://



  

VSOCK

● Efficient general purpose socket interface from 
KVM/qemu hosts to guests

● Avoid maintaining separate guest kernel code like 
virtfs, use the same NFS client but via a different 
socket type

● Not yet in mainline kernel
● See past presentations:

– Stefan Hajnoczi @ KVM Forum 2015
– Sage Weil @ OpenStack Summit Tokyo 2015



  

Nova changes needed

● Hypervisor mediate share access needs 
something aware of shares and guests.
– Add ShareAttachment object+API to Nova
– Hook in to expose FS during guest startup

● Attachments need to know
– How to get at the filesystem? (CephFS, NFS)
– How to expose it to the guest? (VSOCK, virtfs/9p)

https://review.openstack.org/#/c/310050/1/specs/newton/approved/fs-
attach-detach.rst



  

Hypervisor-mediated (VSOCK)

● VSOCK hooks 
– VSOCK: Nova needs to learn to configure 

ganesha, map guest name to CID
– VSOCK: Libvirt needs to learn to configure 

VSOCK interfaces
– VSOCK: Ganesha needs to learn to 

authenticate clients by VSOCK CID (address)



  

Shorter-term things

● Ceph/Manila: Implement update_access() 
properly (store metadata in 
CephFSVolumeClient #15615)

● Manila Improved driver docs (in progress)
● Ceph: backport RADOS namespace integration 

(thanks to eBay team)
● Manila: Expose Ceph keys in API
● Manila: Read only Shares for clone-from-

snapshot



  

Physical Isolation

● Current driver has “data_isolated” option 
that creates pool for share (bit awkward, 
guessing a pg_num)

● Could also add “metadata_isolated” to 
create true filesystem instead of directory, 
and create a new VM to run the MDS from 
Manila.

● In general shares should be lightweight by 
default but optional isolation is useful.



  

Get Involved

● Lots of work to do!
● Vendors: package, automate 

Manila/CephFS deployment in your 
environment

● Developers:
– VSOCK, NFS access.
– New Manila features (share migration etc)

● Users: try it out



  

Get Involved
Evaluate the latest releases:

http://ceph.com/resources/downloads/

Mailing list, IRC:

http://ceph.com/resources/mailing-list-irc/

Bugs:

http://tracker.ceph.com/projects/ceph/issues

Online developer summits:

https://wiki.ceph.com/Planning/CDS

http://ceph.com/resources/downloads/
http://ceph.com/resources/mailing-list-irc/
http://tracker.ceph.com/projects/ceph/issues
https://wiki.ceph.com/Planning/CDS


  

Questions/Discussion
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