

CephFS as a service with
OpenStack Manila

John Spray

john.spray@redhat.com
jcsp on #ceph-devel

Agenda

● Brief introductions: Ceph, Manila
● Mapping Manila concepts to CephFS
● Experience implementing native driver
● How to use the driver
● Future work: VSOCK, NFS

Introductions

CephFS

● Distributed POSIX filesystem:
– Data and metadata stored in RADOS
– Cluster of Metadata servers

● Shipped with upstream Ceph releases
● Clients: fuse, kernel, libcephfs
● Featureful: directory snapshots, recursive

statistics

CephFS

Linux host

M M

M

Ceph server daemons

CephFS client

datametadata 01
10

M

OSD

Monitor

MDS

Learn more about CephFS

CephFS in Jewel: Stable at Last
– Gregory Farnum
– Thursday 11:00 AM
– Level 4 MR 12 A/B (i.e. here)

http://docs.ceph.com/docs/master/cephfs/

https://www.youtube.com/results?search_query=cephfs

Manila

● OpenStack shared filesystem service
● APIs for tenants to request filesystem

shares, fulfilled by driver modules
● Existing drivers mainly for proprietary

storage devices, with a couple of
exceptions:
– GlusterFS
– “Generic” (NFS-on-Cinder)

Manila

Manila API

Driver A

Tenant admin

Driver B

Storage cluster/controller

Guest VM

1. Create share

2. Create share

3. Return address

4. Pass address

5. Mount

Why integrate CephFS and
Manila?

● Most OpenStack clusters already include
a Ceph cluster (used for RBD, RGW)

● An open source backend for your open
source cloud

● Testers and developers need a real-life
Manila backend that is free

● Enable filesystem-using applications to
move into OpenStack/Ceph clouds

Manila concepts and CephFS

Shares

● Manila operates on “shares”
– An individual filesystem namespace
– Is both a unit of storage and a unit of sharing
– Expected to be of limited size

● No such concept in CephFS, but we do
have the primitives to build it.

Implementing shares

● In the CephFS driver, a share is:
– A directory
– ...which might have a layout pointing to a

particular pool or RADOS namespace
– ...which has a quota set to define the size
– ...access to which is limited by “path=...”

constraints in MDS authentication capabilities
(“auth caps”).

Prerequisites in CephFS

● New: path= auth rules

● New: Prevent clients modifying pool
layouts (“rwp” auth caps)

● New: quota as df
● New: remote “session evict”, with filtering

(kicking sessions for a share/ID)
● Existing: quotas, rstats, snapshots

Implementing shares
/
volumes
 my_share/

[client.alice]
 caps: [mds] allow rw path=/volumes/my_share
 caps: [osd] allow rw namespace=fsvolumens_my_share

getfattr ­n ceph.quota.maxbytes /volumes/my_share
file: volumes/my_share
ceph.quota.max_bytes="104857600"

ceph­fuse –name client.alice
–client_mountpoint=/volumes/my_share
/mnt/my_share

Directory

Auth cap

Quota

Mount
command

Access rules

● Manila expects each share to have a list
of access rules. Giving one endpoint
access to two shares means listing it in
the rules of both shares.

● Ceph stores a list of cephx identities,
each identity has a list of paths it can
access.

● i.e. the opposite way around...

Implementing access rules

● In initial driver these are directly updated in
ceph auth caps

● Not sufficient:
– Need to count how many shares require access

to an OSD pool
– Since Mitaka, Manila requires efficient listing of

rules by share

● Point release of driver will add a simple index
of access information.

CephFSVolumeClient

● We do most of the work in our new
python interface to Ceph

● Present a “volume” abstraction that just
happens to match Manila's needs closely

● Initially very lightweight, becoming more
substantial to store more metadata to
support edge-cases like update_access()

● Version 0 of interface in Ceph Jewel

CephFSVolumeClient

Manila

CephFS Driver

CephFSVolumeClient

librados libcephfs

Ceph Cluster

Network

github.com/openstack/manila

github.com/ceph/ceph

Lessons from implementing a
Manila driver

Manila driver interface

● Not a stable interface:
– Continuously modified to enable Manila

feature work
– Driver authors expected to keep up

● Limited documentation
● Drivers can't define their own protocols,

have to make modifications outside of
driver

Adding a protocol

● Awkward: Manila has expectation of drivers
implementing existing protocols (NFS, CIFS),
typical for proprietary filers.

● Open source filesystems typically have their
own protocol (CephFS, GlusterFS, Lustre,
GFS2)

● To add protocol, it is necessary to modify
Manila API server, and Manila client, and
handle API microversioning.

Tutorial: Using the CephFS
driver

Caveats

● Manila >= Mitaka required
● CephFS >= Jewel required
● Guests need IP connectivity to Ceph

cluster: think about security
● Guests need the CephFS client installed
● Rely on CephFS client to respect quota

Set up CephFS

ceph-deploy mds create myserver

ceph osd pool create fs_data

ceph osd pool create fs_metadata

ceph fs new myfs fs_metadata fs_data

Configuring Manila (1/2)

● Create client.manila identity
– Huge command line, see docs!

● Install librados & libcephfs python
packages on your manila-share server

● Ensure your Manila server has connection
to Ceph public network

● Test: run ceph –name=client.manila status

Configuring Manila (2/2)

● Dump the client.manila key into
/etc/ceph/ceph-client.manila.keyring

● Configure CephFS driver backend:

/etc/manila/manila.conf:
 [cephfs1]
 driver_handles_share_servers = False
 share_backend_name = CEPHFS1
 share_driver = manila.share.drivers.cephfs. \
 cephfs_native.CephFSNativeDriver
 cephfs_conf_path = /etc/ceph/ceph.conf
 cephfs_auth_id = manila

$ manila type­create cephfstype false

Creating and mounting a share

From your OpenStack console:

$ manila type­create cephfstype false
$ manila create ­­share­type cephfstype \
 ­­name cephshare1 cephfs 1
$ manila access­allow cephshare1 cephx alice

From your guest VM:

ceph­fuse –id=alice
 ­c ./client.conf –keyring=./alice.keyring
 ­­client­mountpoint=/volumes/share­4c55ad20
 /mnt/share

Currently have to fetch key with Ceph CLI

Multiple backends

● Use multiple Manila backends to target
different storage:
– Different data pools
– Different MDSs (experimental multi-fs in

Jewel)
– Different Ceph clusters

● Could pull some of this into single driver
instance but not clear if needed

Future work

NFS gateways

● Manila driver instantiates service VMs
containing Ceph client and NFS server

● Service VM has network interfaces on
share network (NFS to clients) and Ceph
public network.

● Implementation not trivial:
– Clustered/HA NFS servers
– Keep service VMs alive/replace on failure

NFS gateways

Guest

NFS VM NFS VM

Ceph public net

Share network

MON OSD MDS

Mount -t nfs 12.34.56.78:/

NFS over TCP/IP

CephFS protocol

Hypervisor-mediated

● Terminate CephFS on hypervisor host, expose
to guest locally

● Guest no longer needs any auth or addr info:
connect to the hypervisor and it'll get there

● Requires compute (Nova) to be aware of
attachment to push NFS config to the right
hypervisor at the right time.

● Huge benefit for simplicity and security

Hypervisor-mediated

Guest

Hypervisor

Ceph public net

MON OSD MDS

NFS over VSOCK

Mount -t nfs 2://

VSOCK

● Efficient general purpose socket interface from
KVM/qemu hosts to guests

● Avoid maintaining separate guest kernel code like
virtfs, use the same NFS client but via a different
socket type

● Not yet in mainline kernel
● See past presentations:

– Stefan Hajnoczi @ KVM Forum 2015
– Sage Weil @ OpenStack Summit Tokyo 2015

Nova changes needed

● Hypervisor mediate share access needs
something aware of shares and guests.
– Add ShareAttachment object+API to Nova
– Hook in to expose FS during guest startup

● Attachments need to know
– How to get at the filesystem? (CephFS, NFS)
– How to expose it to the guest? (VSOCK, virtfs/9p)

https://review.openstack.org/#/c/310050/1/specs/newton/approved/fs-
attach-detach.rst

Hypervisor-mediated (VSOCK)

● VSOCK hooks
– VSOCK: Nova needs to learn to configure

ganesha, map guest name to CID
– VSOCK: Libvirt needs to learn to configure

VSOCK interfaces
– VSOCK: Ganesha needs to learn to

authenticate clients by VSOCK CID (address)

Shorter-term things

● Ceph/Manila: Implement update_access()
properly (store metadata in
CephFSVolumeClient #15615)

● Manila Improved driver docs (in progress)
● Ceph: backport RADOS namespace integration

(thanks to eBay team)
● Manila: Expose Ceph keys in API
● Manila: Read only Shares for clone-from-

snapshot

Physical Isolation

● Current driver has “data_isolated” option
that creates pool for share (bit awkward,
guessing a pg_num)

● Could also add “metadata_isolated” to
create true filesystem instead of directory,
and create a new VM to run the MDS from
Manila.

● In general shares should be lightweight by
default but optional isolation is useful.

Get Involved

● Lots of work to do!
● Vendors: package, automate

Manila/CephFS deployment in your
environment

● Developers:
– VSOCK, NFS access.
– New Manila features (share migration etc)

● Users: try it out

Get Involved
Evaluate the latest releases:

http://ceph.com/resources/downloads/

Mailing list, IRC:

http://ceph.com/resources/mailing-list-irc/

Bugs:

http://tracker.ceph.com/projects/ceph/issues

Online developer summits:

https://wiki.ceph.com/Planning/CDS

http://ceph.com/resources/downloads/
http://ceph.com/resources/mailing-list-irc/
http://tracker.ceph.com/projects/ceph/issues
https://wiki.ceph.com/Planning/CDS

Questions/Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

