

A Better VM HA Solution: Split-brain Solving & Host Network Fault Awareness

- Introduction
 - Basic Principles
 - Key Features
 - More Concerns
 - Tests & Others

Introduction

- VM HA(*High Available*) is **still** an important feature, especially for legacy services
 - Still unreformed/cannot be reformed in short term
- The **disadvantages** of traditional HA solutions
 - ➢ Rely on IPMI
 - > Can only handle single scenes
 - Almost no solution to the "split-brain" problem

Objectives

Design Requirements

Integrate with FitOS v3.3

> Fiberhome IaaS Cloud Platform based on OpenStack since 2015

Independent of OpenStack

> Try not to modify native codes AMAP

> Easy to use, easy to maintain

Feature Requirements

- > Solve the "split-brain" problem
- Flexible handling of some complex faults

Basic Principles

Architecture

FiberHome

Composition

- CentOS 7.4 + OpenStack
- Shared Storage: CephFS/NFS
- > HaStack: HA controller
 - Controller Node
 - ≻ A-S
- > Fitlock:
 - A lock-manager, for
 "split-brain" protection
 - Compute Node
- > Etcd:
 - To provide 3 network
 plain health detection
 - Controller Node
 - ≻ A-A

New Components

I.

FiberHome

Componen ts Name	Positions	Deployment requirements	Reliability Requirements	Components Description
HaStack	Controller Node	3 nodes by defaults, A-A	Not allowed to fail at the same time	To control the entire HA system
Etcd	Controller Node	3 nodes by defaults, A-A 3 clusters	Two processes are not allowed to fail at the same time in the same cluster	 To establish a 3 network plane cluster and sense the global health status for HA decision As a message bridge between HaStack and HaStack-agent
HaStack- agent	Compute Node	Single node	-	To complete partial HA management with HaStack:1. Mount the shareable folder2. Report the heartbeat status of the node and the VM Fencing event
Libvirt	Compute Node	Single Node	-	-
Fitlock	Compute Node	Single Node	-	A lock manager like Sanlock, work with Libvirt to complete registration and heartbeat updates for each lock resource on shared storage
CephFS	Storage Node	 Sharable folder: mount to each compute nodes Ceph-mon: 3 nodes by defaults, A-A Ceph-mds: 3 nodes by defaults with ceph-mon, A-S 	 Shareable folder: Ceph 3 copies; Ceph-mon: 2 processes are not allowed to fail at the same time Ceph-mds: not allowed to fail at the same time 	Ceph components(ceph-mds, ceph-mds), to provide shared file system storage for storing lock files

Fencing: The process of locking resources(VMs) away from a node whose status is uncertain --> Stop related VMs

Use Cases

1. Nova: Create a HA VM

HA Detection

• When will it trigger HA?

- 1. An interruption occurred on the host network plane, and
- 2. This interruption conforms to the HA strategy

• When will not trigger HA?

- VM status is not in: ACTIVE, STOPPED, ERROR
- VM internal exceptions (blue screen/crush..)
- The VM virtual network is abnormal
- The <u>core components</u>(*Etcd, Ceph.*.) of the platform are abnormal

Key Features

Split-brain Solving (1)

- What' s the "split-brain"?
- What' s the influence on the system?

- Our Proposal
 - Fitlock: A "split-brain" protection read-write lock manager like Sanlock
 - > Fencing Protection: Avoid unnecessary VM Fencing

Split-brain Solving (2)

Fitlock

- A lock manager built on shared storage using *Delta Lease* & *Paxos Lease* like Sanlock
- > The host lease renewal = All that host' s VM leases renewal
- Key point: If host lease is being renewed, then the VM lease is owned cannot be acquired, until it has <u>expired</u>:
 - A VM that is already running on one node cannot start simultaneously on another node
 - > There won' t be two identical VMs in the system!
- What' s the differences between Fitlock and Sanlock?

Items	Sanlock	Fitlock
Lock granularity	VM disk	VM
When heartbeat lost	wait & kill VMs	ask & wait (via socket)
When process restart	lockspace will lost!	add Fencing Protection

Split-brain Solving (3)

• Case 1: When a HA VM is spawned:

> The VM lease will be registered in the lockspace

- <u>Case 2</u>: When shared storage is inaccessible:
 - HaStack-agent <u>report Fencing event</u> to HaStack and <u>wait for</u> <u>a response</u>:
 - > If it get a response in time, follow the instructions
 - ➤ <u>Fencing</u>, or
 - ➢ <u>Not Fencing</u>
 - Otherwise, <u>Fencing</u>
 - > In this situation:
 - > HaStack will find the storage is abnormal
 - > HaStack-agent will get <u>Not Fencing</u>
 - > All HA VMs will remain

Split-brain Solving (4)

• <u>Case 3</u>: When a compute node loses connections with controller nodes:

- The original host can <u>still</u> update heartbeat on shared storage, it <u>still</u> has the lease
- > The VM will still be running, and cannot be started on other hosts
- > The "split-brain" will not occur!

• <u>Case 4</u>: When a compute node is isolated from all nodes:

- > The compute node is disconnected from all nodes
- The HA VMs will <u>be stopped</u> at original host due to "split-brain" protection
- > All HA VMs will be evacuated to other hosts at this time
 - > If don' t Fencing:
 - > Once the host communication **resumes**, all HA VMs

will continue to operate disks in a short term

> The "split-brain" may occur!

Host Network Fault Awareness (1)

Build 3 Clusters on Etcd

Corresponding to 3 physical network plains of host

Heartbeat Update

- > HaStack-agent:
 - Every 20s
- ➤ HaStack:
 - > Obtain connectivity status every 20s
 - > Execute HA after 2min when heartbeat lost

Host Network Fault Awareness (2)

Communication Method

- via Etcd API
 - > Heartbeat. via 1x network plane
 - > *Key messages*. via 3x network planes
 - Like Fencing Event..
 - HaStack removes redundancy

• HA Strategy

- Flexible customization of HA recovery strategy
- Configured by a *json* template

<i>No.</i>	Mgmt	Service	Storage	HA?
0	×	×	×	\checkmark
1	×	×	\checkmark	\checkmark
2	×	\checkmark	×	\checkmark
3	×	\checkmark	\checkmark	×
4	\checkmark	×	×	\checkmark
5	\checkmark	×	\checkmark	×
6	\checkmark	\checkmark	×	\checkmark
7	\checkmark	\checkmark	\checkmark	×

More Concerns

Task Tracking

Task Tracking

> All HA actions will be tracked

> Failed task will be retried 5 times

HA Flow Control

- Global HA Ratelimit
 - > A dynamic length-variable queue
 - Support runtime modification!
- Host HA Ratelimit

All parameters can be configured

Protection Mechanisms

Process Protection

➤ watchdog

- Self-Defense & Self-Recovery
 - Two protection mechanisms when large-scale failures occur
 - > Configurable

- <u>Self-Defense</u>: 50% hosts down, HaStack stop
- <u>Self-Recovery</u>: 70% hosts restore, HaStack recover

HA Maintenance

> To turn off/on the HA function

ha_maintenance	HaStack: when host is powered off	HaStack-agent: when heartbeat lost
ON	Not HA	Not Fencing
OFF (default)	НА	Report Fencing Event

Related Alarms

Major Events & Alarms

Tests & Others

Tests

• Environments

> 38x Compute Nodes

 \succ Tools

> Rally, Heat, some scripts..

≻ fio

Zabbix, Grafana

Count	CPU model	CPU	Mem	Disk	Ethernet
26x	E5-2658A v3 @ 2.20GHz	48	128	600G	2x 10GE 6x 1GE
12x	E5-2620 v3 @ 2.40GHz	24	64	500G	2x 10GE 4x 1GE

• Scenarios

• Results

Host Number: Down/Total	VM Number: HA/Total	Global HA Ratelimit	Storage pressurized	Single VM average Recovery Time	Total Recovery Time
20/38 (52.6%)	1000/1741	20	Ν	~1 min	41min
20/38 (52.6%)	1000/1741	100	Ν	1~2 min	20min
20/38 (52.6%)	1000/1741	20	Υ	~2 min	1h 3min

Production Cases

Project_1: レサチャチャー・ ・ Scenario: Hybrid Cloud ・ Scale: Project_2: Project_2: Project_2: トロ目前信 下avelSky

- > **Region**: 5x
- Servers. 800x
- > VMs. 2700x

- > **Region**. 1x
- Servers. 122x
- > *VMs*. 1000x

- Scenario: <u>Private Cloud</u>
- > Scale:
 - > **Region**. 1x
 - Servers. 131x
 - > *VMs*. 1000x

- QGA Integration
- Visualized HA strategy template Selection
- Reduce HA recovery time

- About Split-brain:
 - > [1] <u>https://en.wikipedia.org/wiki/Split-brain_(computing)</u>
 - [2] <u>http://linux-ha.org/wiki/Split_Brain</u>
- About Sanlock
 - > [3] <u>https://www.ovirt.org/develop/developer-guide/vdsm/sanlock/</u>
- About CephFS
 - > [4] <u>https://www.linux.com/news/converging-storage-cephfs-now-production-ready</u>
 - > [5] Benchmark from eBay: <u>https://www.slideshare.net/XiaoxiChen3/cephfs-jewel-mds-performance-benchmark</u>
- About < Distributed Health Checking for Compute Node High Availability>:
 - [6] <u>https://www.openstack.org/videos/tokio-2015/distributed-health-checking-for-compute-node-high-availability</u>

Contact Us

Jiang WU *Architect, Fiberhome*

wingwj@gmail.com

- Fiberhome:
 - A globally information and communication network product and solution provider
 - > One of the world' s 10 most competitive enterprises in optical communications
 - > Ranked 1st in export among optical cable enterprises of China for 8 consecutive years
 - Gold Member of the OSF since 2017

