
Operational and Scaling Wins at Workday
From 50K to 300K Cores

OpenStack Summit
Berlin 2018

Edgar Magana Imtiaz Chowdhury

Architecture Overview
and Use Cases

Kyle Jorgensen

Clearing the Image
Distribution Bottleneck

Sergio de Carvalho

Identifying and Fighting
Scaling Issues

Howard Abrams

Monitoring, Logging
and Metrics

Moderator Image Challenges API ChallengesInstrumentation

Workday provides enterprise cloud applications
for financial management, human capital
management (HCM), payroll, student systems,
and analytics.

OpenStack @ Workday

Our Story

Our Journey So Far

Cloud
Engineering

Team formed

2013 201920182017201620152014

OpenStack
Icehouse

in Development
- Internal
workload

Deployment
automation
tools ready.
- 2 Workday

services in QA

First production
workload

OpenStack
Mitaka

Development
- 14 services

- Production
workload on
Mitaka
- 39 services

50% of
production
workloads

on OpenStack

Workday Private Cloud Growth

Revenue
US $273M

Our Private Cloud

5
Data Centers

45
Clusters

4k
Active VM Images

4.6k
Compute Hosts

300k
Cores

22k
Running VMs

How Workday Uses the Private Cloud

Weekly update Narrow Update
Window

https://www.blockchainsemantics.com/blog/immutable-blockchain/

Immutable Images

Architecture Evolution
Architecture
Evolution

Initial Control Plane Architecture

MySQL

glance

keystone

nova

rabbitmq

OpenStack
Controller

SDN Controller

Cassandra

rabbitmq

zookeeper

Contrail API

Key drivers for architectural evolution

Downtime
upgrade0 Provide upgrade path without

affecting the workload

High availability 99% Make critical services highly
available

Scalability400% Scale API services horizontally

Control Plane

HAProxy 1

Controllers

HAProxy 2

Clients

rsOpenStack
Controllers

SDN
Controllers

Stateless API services Stateful services

Logging and Monitoring and Metrics, Oh My!

Instrumentation

● No access to production systems: full automation

● Dispersed logs among multiple systems

● Sporadic issues with services:

“What do you mean RabbitMQ stopped!?”

● Vague or subjective concerns:

“Why is the system slow!?”

Instrumentation Challenges

OpenStack
Node

Instrumentation Architecture

Big Panda

Alerts

Wavefront

Metrics

Log
Collector

Logs

HA ELK

Log Messages
Sensu
Client

Uchiwa

Checks

For each issue, we:
● Fixed the issue/bug
● Wrote tests to address the issue/bug
● Wrote a check to alert if it happened again

Monitoring

Our customers use our project (OpenStack), a particular way…

For each node in each cluster, test by:
● Start a VM with a particular image
● Check DNS resolves host name
● Verify SSH service
● Validate LDAP access
● Stop the VM

Rinse and Repeat

Example: Our Health Check

CRITICAL: Health validation suite had failures.
 Connection Error - While attempting to get VM details.
 See logging system with r#3FBM for details.

Troubleshooting Issues

Internal Wiki
Support
Documents

Check Failure
Details

Internal Logging
Collection
System

Troubleshooting with Logs

Troubleshooting with Logs

Troubleshooting with Logs

Troubleshooting with Logs

There’s death, and then there’s illness…

Metrics

What is this guy doing up here?

If all the compute node load levels are down here…

Dashboards to Track Changes

nbproc=1
–mc –set2

nbproc=1
+mc –set2

nbproc=1
+mc +set2

nbproc=2
–mc –set2

nbproc=2
+mc -set2

nbproc=2
+mc +set2

Transient Dashboards

What’s up with MySQL?

Instrumentation Takeaways

● Can’t scale if you can’t tweak. Can’t tweak if you can’t monitor.

● Collect and filter all the logs

● Create checks for everything...especially running services

● Invest in a good metric visualization tool:
○ Create focused graphs

○ Dashboards start with key metrics (correlated to your service level

agreements)

○ Be able to create one-shots and special-cases

○ Learn how to accurately monitor all the OpenStack services

○ Overview/Summary

○ Networking Services

○ Network Traffic

○ HAProxy

○ RabbitMQ

○ MySQL

○ Cassandra

○ Zookeeper

○ Hardware (CPU Load / Disk)

Clearing the Image Distribution Bottleneck

Image Distribution

Challenge: Control Plane Usage

Example - Nova Scheduler response time

Challenge: Control Plane Usage

Example - Nova Scheduler response time

Challenge: Control Plane Usage

Example - Count of deployed VMs

Large images: worst offender

~6GB
Image size

~1700
Instance count across DC’s

Problem

Glance

Compute Compute Compute Compute

Many VM boots in short period of time + large images = bottleneck

Problem

Glance

Many VM boots in short period of time + large images = bottleneck

Cache Cache Cache Cache

Problem

Glance

Many VM boots in short period of time + large images = bottleneck

SLOW...

Cache Cache Cache Cache

curl https://<host>:8774/v2.1/image_prefetch -X POST \

...

-H "X-Auth-Token: MIIOvwYJKoZIQcCoIIOsDCCDasdkoas=" \

-H "Content-Type: application/json" \

-d '{ "image_id": "d5ac4b1a-9abe-4f88-8f5f-7896ece564b9" }'

Solution: Extend Nova API

Operator

curl https://<host>:8774/v2.1/image_prefetch -X POST \

...

-H "X-Auth-Token: MIIOvwYJKoZIQcCoIIOsDCCDasdkoas=" \

-H "Content-Type: application/json" \

-d '{ "image_id": "d5ac4b1a-9abe-4f88-8f5f-7896ece564b9" }'

Solution: Extend Nova API

Operator Nova API Nova
Compute

libvirtd
driver

Nova
Conductor

Nova DB
API

HTTP/1.1 202 Accepted

Content-Type: application/json

Content-Length: 50

X-Compute-Request-Id:

req-f7a3bd10-ab76-427f-b6ee-79b92fc2a978

Date: Mon, 02 Jul 2018 20:52:37 GMT

{"job_id": "f7a3bd10-ab76-427f-b6ee-79b92fc2a978"}

(Async job)

Solution: Extend Nova API

Operator

Nova API

curl https://<host>:8774/v2.1/image_prefetch/image/<image_ID>

...

OR

curl https://<host>:8774/v2.1/image_prefetch/job/<job_ID>

...

Solution: Extend Nova API

Operator Nova API Nova DB
API

HTTP/1.1 200 OK ...

{

 "overall_status": "5 of 10 hosts done. 0 errors.",

 "image_id": "d5ac4b1a-9abe-4f88-8f5f-7896ece564b9",

 "job_id": "f7a3bd10-ab76-427f-b6ee-79b92fc2a978",

 "total_errors": 0,

 "num_hosts_done": 5,

 "start_time": "2018-07-02T20:52:37.000000",

 "num_hosts_downloading": 2,

 "error_hosts": 0,

 "num_hosts": 10

}

Solution: Extend Nova API

Operator

Nova API

Before

Cache hit

• Avg 300 sec of VM boot time
reduced

• VM creation failure rate
decreased by 20 %

After

Image Prefetch API Result

HAProxy Bottleneck

Load balancer
Nova

Compute

GET image

Glance
API

Glance
API

Download
307 redirect

Glance
API

HTTPD HTTPD HTTPD

HAProxy Bottleneck

• Under heavy load, downloading images can be a bottleneck

‒ Contribute image prefetch back to community

• HA Tradeoffs

• API Specific monitoring allows for unique insights

Image Distribution: Key Takeaways

Identifying and Fighting Fire Scaling Issues

API Challenges

Nova Metadata API

14 seconds!

Average response time (sec)

Each VM makes > 20 API requests

Nova Metadata API & Database Transfer Rate

Average response time (sec)Bytes sent (MB/sec)

1 GB/sec 14 seconds!

Each VM makes > 20 API requests

SELECT ...

 FROM (SELECT ...

 FROM instances

 WHERE instances.deleted = 0

 AND instances.uuid = ?

 LIMIT 1) AS instances

 LEFT OUTER JOIN instance_system_metadata

 ON instances.uuid = instance_system_metadata.instance_uuid

 LEFT OUTER JOIN instance_extra

 ON instance_extra.instance_uuid = instances.uuid

 LEFT OUTER JOIN instance_metadata

 ON instance_metadata.instance_uuid = instances.uuid

 AND instance_metadata.deleted = 0

 ...

Top Query by “Rows Sent”

SELECT ...

 FROM (SELECT ...

 FROM instances

 WHERE instances.deleted = 0

 AND instances.uuid = ?

 LIMIT 1) AS instances

 LEFT OUTER JOIN instance_system_metadata

 ON instances.uuid = instance_system_metadata.instance_uuid

 LEFT OUTER JOIN instance_extra

 ON instance_extra.instance_uuid = instances.uuid

 LEFT OUTER JOIN instance_metadata

 ON instance_metadata.instance_uuid = instances.uuid

 AND instance_metadata.deleted = 0

 ...

Instance Object-Relational Mapping

instances

instance
metadata

instance
system

metadata

N N
1

SELECT ...

 FROM (SELECT ...

 FROM instances

 WHERE instances.deleted = 0

 AND instances.uuid = ?

 LIMIT 1) AS instances

 LEFT OUTER JOIN instance_system_metadata

 ON instances.uuid = instance_system_metadata.instance_uuid

 LEFT OUTER JOIN instance_extra

 ON instance_extra.instance_uuid = instances.uuid

 LEFT OUTER JOIN instance_metadata

 ON instance_metadata.instance_uuid = instances.uuid

 AND instance_metadata.deleted = 0

 ...

Instance Object-Relational Mapping

Expected result set (metadata union):
50 + 50 = 100 rows

Actual result set (metadata product):
50 x 50 = 2,500 rows!

instances

instance
metadata

instance
system

metadata

N N
1

SELECT ...

 FROM (SELECT ...

 FROM instances

 WHERE instances.deleted = 0

 AND instances.uuid = ?

 LIMIT 1) AS instances

 LEFT OUTER JOIN instance_system_metadata

 ON instances.uuid = instance_system_metadata.instance_uuid

 LEFT OUTER JOIN instance_extra

 ON instance_extra.instance_uuid = instances.uuid

 LEFT OUTER JOIN instance_metadata

 ON instance_metadata.instance_uuid = instances.uuid

 AND instance_metadata.deleted = 0

 ...

Instance Object-Relational Mapping

Expected result set (metadata union):
50 + 50 = 100 rows

Actual result set (metadata product):
50 x 50 = 2,500 rows!

https://bugs.launchpad.net/nova/+bug/1799298

Thanks to Dan Smith & Matt Riedemann!

instances

instance
metadata

instance
system

metadata

N N
1

Commit: Avoid lazy-loads in metadata requests (Feb 5 2016)

The metadata server currently doesn't pre-query for metadata and system_metadata, which
ends up generating *two* lazy-loads on many requests. Since especially user metadata is
almost definitely one of the things an instance is going to fetch from the metadata
server, this is fairly inefficient.

--- a/nova/api/metadata/base.py

+++ b/nova/api/metadata/base.py

 def get_metadata_by_instance_id(instance_id, address, ctxt=None):

 ctxt = ctxt or context.get_admin_context()

 instance = objects.Instance.get_by_uuid(

- ctxt, instance_id, expected_attrs=['ec2_ids', 'flavor', 'info_cache'])

+ ctxt, instance_id, expected_attrs=['ec2_ids', 'flavor', 'info_cache',

+ 'metadata', 'system_metadata'])

 return InstanceMetadata(instance, address)

Nova Pre-loads Metadata Tables (since Mitaka)

Reverting Metadata Pre-load

No metadata pre-loadBaseline test

Average response time (sec)

Bytes sent (MB/sec)

700 MB/sec2.2 sec

345 MB/sec

0.5 sec

Can We Do Better?

HAProxy

VM

Nova
Metadata

API

Nova
Metadata

API

GET metadata

 Nova
Metadata

API

Can We Do Better?

HAProxy

VM

Nova
Metadata

API

Nova
Metadata

API

GET metadata

 Nova
Metadata

API

Database

Memcached!

HAProxy

VM

Nova
Metadata

API

Nova
Metadata

API

GET metadata

 Nova
Metadata

API

Database

Enabling Memcached

Average response time (sec)

Bytes sent (MB/sec)

Memcached enabledBaseline test

700 MB/sec2.2 sec

400 MB/sec

0.2 sec

No Metadata pre-load + Memcached

No metadata pre-load Memcached enabled Both

Product of
metadata tables

Repeated database
fetching

Multiple API servers
fetching data through

load balancers

Root Causes

Heavy SQL query No Memcached HA architecture

Booting many VMs
simultaneously

with lots of metadata

Lots of metadata

Rolled back pre-load
of metadata tables

(2-line code change)

Enabled Memcached
(3-line config change)

SQLProxy?
Clustered

Memcached?

Fixes

Reduced SQL load Memcached HA architecture

Reduce (ab)use of
metadata?

Lots of metadata

Questions?

