

Flexible NFV WAN interconnections with Neutron BGP VPN

Thomas Morin Orange

OpenStack Summit, May 2018, Vancouver BC

orange[™]

Agenda

- BGP VPNs as a key building block for Telcos
 - 1-slide reminder on BGP VPNs
- Why we like dynamic routing in these contexts
- An example with vEPC
- How do OpenStack and SDN controllers come into the picture ?
- Neutron BGP VPN
 - 3-slides drill down
- Live demo !

BGP VPNs: a base building block in the NFV toolbox

- Telcos require network isolation
 - mobile backhaul
 - wholesale/B2B offers
 - triple-play
 - ... these do not run directly over the Internet !
- BGP VPNs: a key building block used by Telcos to address this need for isolation
- And then NFV comes into the picture !

=> need to interconnect these WAN BGP VPNs with the NFV Infrastructure, i.e. OpenStack

Base principles of BGP VPNs (simplified)

- dataplane: MPLS, to isolate the traffic of different VPNs on the wire
 - MPLS (in this context): an encapsulation carrying packets of a VPN
 - MPLS "label": dataplane identifier used for isolation
- control plane: BGP routing protocol, to indicate how to reach a destination
 - advertise routes:
 - "10.11.0.0/16 in VPN 888:42 is reachable via router @X using MPLS Label N"
 - VPN "identifiers": "Route Target" (e.g. 888:42)
 - calling them 'identifier' is very simplified, there is much more flexibility
 - only present in the control plane, not on the wire!
- initially for L3VPNs (end of 20th century)
- then extended for L2/Ethernet, in particular E-VPN (a few years ago)
- dataplane later extended to other encapsulations:
 - MPLS/GRE, MPLS/UDP
 - VXLAN for E-VPN

Dynamic routing required, why ? [1/2] Anycast load-balancing

- « Anycast »: multiple hosts (e.g. VMs) sharing a given IP
- Equal Cost Multi-Path (ECMP)
 - ECMP: the kind of packet load balancing done by routers
 - most often done per-flow
 - per packet
 - 5-tuple hashing to always load balance a given flow on the same path
- Scale-up/Scale-down
 - Dynamic routing lets routers dynamically know the (multiple) places where a given service IP is present
 - e.g. the multiple VM ports where a given service IP is defined

We like to combine these !

Dynamic routing required, why? [2/2] Let's avoid router configuration provisioning when we can !

- Typical hurdles if router configuration provisioning is involved:
 - need to configure VRFs, VLANs, static routes
 - router configuration is not managed by the same ops team (sometimes)
 - router automation tooling/standards:
 - not yet easy enough so that we can assume its here
 - even when done : need to interconnect the tools together
- How to avoid that ? => dynamic routing from the SDN controller !
 - have the SDN controller advertise BGP VPN routes
 - only one-shot router configuration: no per-VPN, or per-VM configuration
 - IP/MPLS gateways know about VMs coming & going thanks to dynamic route updates

Let's do this with the Openstack Networking API !

- Initial context: some SDN controllers support BGP VPN routing
 - each with their own API
 - no possibility to let tenants manage their BGP VPN connectivity
- Need for an API being :
 - SDN-controller agnostic
 - multi-tenant

an API to control ... BGP VPN features of ...

nuagenetworks⁻⁻

BGP VPN : also with Neutron drivers !

- Beyond an API towards BGPVPN features in SDN controllers, an implementation in Neutron is also important :
 - as a reference driver, for use in the OpenStack CI
 - because you can want to use these features with Neutron ML2 drivers, without adding a heavier SDN controller to your deployment

an API to control ... BGP VPN features of ...

Networking BGPVPN features

- BGPVPN definitions:
 - L2 EVPN
 - L3 IP VPN
- Granularity of what is interconnected:
 - a Network
 - a Router
 - a Port
- Fine-grained control of routing (Queens)
 - static prefixes reachable via a Port
 - a.k.a « static routes »
 - routes of another BGPVPN reachable via a Port
 - a.k.a « route leaking »
 - control of BGP local preference
 - e.g. active/backup

- Drivers for...
 - Neutron ML2
 - OVS
 - linuxbridge
 - OpenDaylight
 - Tungsten Fabric / Contrail
 - Nuage Networks
- And also...
 - Heat bindings
 - Horizon GUI
 - Tempest suite

Let's do a demo !

- What will we do ?
 - a set of anycast DNS servers dynamically made reachable in a BGPVPN
 - dynamically scale up / down
 - zero touch on the gateway IP/MPLS router
- How ?
 - Under the hood:
 - IP/MPLS router running in a VM
 - simulated end-user (VM) connected in the VPN
 - Openstack : a devstack VM
 - Neutron OVS reference driver for BGP VPN (a.k.a bagpipe)
 - OpenVSwtich >= 2.8 (for MPLS/GRE support)
 - In the OpenStack tenant :
 - a BGPVPN (L3/IPVPN)
 - one-shot creation by the admin
 - match VPN instance on router
 - simple DNS server VMs
 - each configured to give a different DNS answer to make load balancing easily observed
 - each VM Port is associated with the BGPVPN, with a route set for the DNS servers anycast IP (10.8.8.8)

(demo script)

- bgpvpn list
- port create port1 --network private
- server create dns-vm1 --port port1 --user-data cloudinit-dns1.sh --flavor cirros256 --image cirros
- port set port1 --allowed-address ip-address=10.8.8.8
- bgpvpn port association create vpn-red port1 --prefix-route prefix=10.8.8.8/32
- # dig @10.8.8.8 vancouver.demo
- port create port2 --network private
- server create dns-vm2 --port port2 --user-data cloudinit-dns2.sh --flavor cirros256 --image cirros
- port set port2 --allowed-address ip-address=10.8.8.8
- bgpvpn port association create vpn-red port2 --prefix-route prefix=10.8.8.8/32
- # dig @10.8.8.8 vancouver.demo # multiple times to see the effect of load balancing
- port create port3 --network private
- server create dns-vm3 --port port3 --user-data cloudinit-dns3.sh --flavor cirros256 --image cirros
- port set port3 --allowed-address ip-address=10.8.8.8
- bgpvpn port association create vpn-red port3 --prefix-route prefix=10.8.8.8/32
- # dig @10.8.8.8 vancouver.demo
- server delete dns-vm1
- # dig @10.8.8.8 vancouver.demo
- server delete dns-vm3
- # dig @10.8.8.8 vancouver.demo

cloudinit-dns.sh: #!/bin/sh ip addr add 10.8.8.8/32 dev lo echo vancouver.demo 1.1.1.1 > /etc/dnsd.conf dnsd

What's next...?

- Rocky
 - Implement support for Router Association advertise_extra_routes attribute
- On the radar
 - possible API evolutions...
 - BGPaaS
 - trigger to enable BFD healthcheck
 - control of BGP Communities
 - P2P/VPWS
 - self-service BGPVPN
 - driver for networking-ovn ?
 - driver for dragonflow ?
- Related
 - « Neutron-Neutron Interconnections »

how to let cloud users get private, on-demand interconnections without the overhead of IPSec

Wrap up

- Neutron BGPVPN API extension provides key features to let us do NFV interconnects in flexible ways
- Many other use cases as well
 - multi-DC / inter-DC
 - cloud / business interconnects
- This is opensource: your contributions are welcome ! (and needed!)
 - #openstack-net-bgpvpn (irc.freenode.net)

Useful pointers...

- Related talks during this summit:
 - « Integration of Multiple OpenStack Clouds with a Core MPLS Network »
 - « Using Neutron BGP VPN for edge networking »
- Related work in progress
 - « Neutron-Neutron Interconnections » https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
- Docs
 - API: https://developer.openstack.org/api-ref/network/v2/#bgp-mpls-vpn-interconnection
 - Service plugin and drivers: https://docs.openstack.org/networking-bgpvpn/latest
- Release notes
 - https://docs.openstack.org/releasenotes/networking-bgpvpn

