September 6, 2017

AT&T Edge Computing Strategy and OpenStack's Role in It

Kandan Kathirvel – Director (Cloud Strategy & Architecture)

Rodolfo Pacheco – Lead-System Engineer

AT&T Labs

Edge Computing (EC) – Telco drivers

Edge computing is a method of optimizing **cloud** computing systems by performing data processing at the **edge** of the network, near the source of the data.

- Quality of Experience (QOE) The reduction in latency and more efficient utilization of network capacity
- Right Content at the Edge could reduce backhaul traffic Data from the edge is processed at the edge
- **Decompose and dis-aggregate access function** Flexible with modularity and loose coupling of both Hardware and Software
- Better Network Resiliency Ability to deploy cluster between Edge Data Center allowing for shared restoration of capacity

Edge Computing - Placement

Placement varies depending upon the use case, latency, space availability, etc.,

Open Network Automation Platform (ONAP) can provide seamless automation across Edge Cloud and Centralized Cloud

Edge requires flexible architecture that can evolve as technology evolve

OpenStack based Edge Architecture

Common orchestration across data center and edge Open Network Automation Platform Runtime Platform (Minimum set for Edge) Nova Neutron Networking Compute **Horizon Keystone** Dashboard Identify Service Cinder Glance Block Storage Image Service Build & Deploy (Full Automation) Full Automation Stack – AT&T developed and contributing to Open Stack and CNCF

VNF Networking (initial set)

OVS DPDK

Network Controller NW Performance

SR-IOV CNI

NW Performance Container Networking

Economical | Zero touch provisioning | Thin control

$Full \ Automation \ Stack-$ AT&T developed and contributing to Open Stack and have plans to contribute to CNCF

Demo was based on these Open Source

Under cloud Control Plane Repositories

Promenade - A deployment framework for resilient, self-hosted bootstrapping of a Kubernetes cluster

https://github.com/att-comdev/promenade

Shipyard - A workflow engine to execute a graph of deployment activities

https://github.com/att-comdev/shipyard

Drydock - A pluggable orchestrator to translate a YAML host topology into a provisioned set of host

https://github.com/att-comdev/drydock

Armada - An orchestrator for installing, upgrading, and managing a collection of Helm chart

https://github.com/att-comdev/armada

Deckhand - A foundational python REST YAML processing engine providing data and secrets management to other platform services. https://github.com/att-comdev/deckhand

OpenStack Helm Repositories

https://github.com/openstack/openstack-helm

https://github.com/openstack/openstack-helm-addons

https://github.com/openstack/openstack-helm-infra

Support these Open Source projects for community benefit!

OpenStack for Edge Computing!

Community to recognize EC as No.1 goal – Address broader Edge Use cases

Zero-Touch provisioning is key – No human touch install and upgrade of OpenStack

Support massive scale—Thousands of locations.

Support modular deployment – Only deploy needed components

Support new technologies faster (Edge enablers) – GPU, FPGA, NPU, etc.,

Support integration with other Edge Technologies – Containers, ONAP, etc.,

